

Innovative Technology Limited ®

SSP Smiley® Secure Protocol

Document Issue 12 - Protocol Version 3

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Derker, Oldham. OL1 4EQ

SSP Smiley® Secure Protocol Version 3 – GA138-12

 2 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

Change History.

Innovative Technology Ltd

Title: SSP Gaming Protocol
Drawing No: GA138 Project:

Author: P. Dunlop Date: 26/05/98
Format: MS Word 2000

Issue Protocol Ver Release Date Mod By Comments
Issue 1 1 26/05/98 PD
Issue 2 1 03/02/99 TB
Issue 3 1 11/06/99 AK
Issue 4 2 4/02/00 PD
Issue 5 2 20/06/00 PD
Issue 6 2 26/10/00 PD
Issue 7 2 20/11/00 PD
Issue 8 2 20/01/01 TB
Issue 9 2 4/10/01 TB

Issue 10 2 21/01/02 AK
Issue 11 2 23/03/04 PK General Revision
Issue 12 3 05/08/04 TB Protocol Version 3

Issue 4. – Peter Dunlop 13/01/2000
Introduction of generic commands. Introduction of commands/ responses for coin readers and coin hoppers. Introduction of
addressing structure. Introduction of encrypted packets. Upgrade “Protocol Version’ to 2.

Issue 5 – Peter Dunlop 20/06/2000
Clarification of remote download specification – addition of example sequences. Correction of command conflict – SYNC and
LAST REJECT CODE specified with same code, LAST REJECT CODE has been changed to 0x17. Addition of notes to
identify function not currently implemented on NV4 / NV4X.

Issue 6. – Peter Dunlop 26/10/00
Block size missing from header description in version 5 – fixed. Rewording of description of remote downloading protocol.
Addition of maximum block size. No code changes required in product firmware or demo code. Changed example CRC code
from assembler example to C example. Addition of simplified remote programming flow chart.

Issue 7. – Peter Dunlop 20/11/00
Introduction of basic card reader commands. Addition of FAIL as a generic response. Addition of manufacturers extension
generic command for use internally.

Issue 8. – Tim Beswick 20/01/01
Change SLAVE_RESET form generic response to an event response to reflect correct behaviour. Addition of euro county code
to appendix.

Issue 9. – Tim Beswick 04/10/01
Addition of HOLD command to allow escrow implementation on BNV

Issue 10 – Andrew Kennerley 21/01/02
 Addition of slave address for a Audit Collection Device

Issue 11 – Peter King 23/03/04
General Revision Correction of Slave ID Reference in section 3.1
Addition of extra address allocation for note validators

SSP Smiley® Secure Protocol Version 3 – GA138-12

 3 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

Issue 12 – Tim Beswick 05/08/04
Addition of SHOW_RESET_EVENTS BNV commands and note cleared at reset events. Protocol taken to Version 3

SSP Smiley® Secure Protocol Version 3 – GA138-12

 4 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

Table Of Contents
Change History. ... 2
1.0 Introduction .. 5
2.0 General Description.. 6
3.0 Hardware Layer.. 7
4.0 Transport Layer. ... 8

4.1 Packet Format. ... 8
4.2 Packet Sequencing... 8

5.0 Encryption Layer. (Currently not implemented) .. 9
5.1 Packet Format. ... 9
5.2 Encryption Keys.. 9
5.3 Encryption Algorithm... 9
5.4 Encryption Example.. 10

6.0 Control Layer.. 11
6.1 Introduction... 11
6.2 Addressing.. 11
6.3 Peripheral Validation... 11
6.4 Generic Commands and Responses. ... 12

6.4.1 Generic Commands ... 12
6.4.2 Generic Responses.. 13
6.4.3 Remote Programming (Version 2.65 and later)...................................... 13
6.4.4 Example programming file formats (ITL NV4 Validator). 14
6.4.5 Simplified remote programming flow chart. .. 15

6.5 Banknote Validator ... 16
6.5.1 BNV Operation. .. 16
6.5.2 BNV Commands .. 16
6.5.3 BNV Response To Polls... 18

6.6 Coin Acceptor ... 19
6.6.1 Coin Acceptor Operation.. 19
6.6.2 Coin Acceptor Commands ... 19
6.6.3 Coin Acceptor Responses to Polls ... 21

6.7 Coin Hopper.. 22
6.7.1 Coin Hopper Operation .. 22
6.7.2 Coin Hopper Commands.. 22
6.7.3 Coin Hopper Responses to Polls ... 23

6.8 Basic Card Reader. .. 24
6.8.1 Basic Card Reader Operation. ... 24
6.8.2 Basic Card Reader Commands.. 25
6.8.3 Basic Card Reader Responses to Polls. .. 26

Appendix A – Country Codes. .. 27
Appendix. B – Block Encryption Routines. ... 28

B.1 Encryption routine .. 28
B.2 Decryption routine .. 28

Appendix C – CRC Calculation Routines. .. 29

SSP Smiley® Secure Protocol Version 3 – GA138-12

 5 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

1.0 Introduction
This manual describes the operation of the Smiley® Secure Protocol - SSP as fitted with Firmware
Version 1.10 or greater.

ITL recommend that you study this manual as there are many new features permitting new uses and
more secure applications.

If you do not understand any part of this manual please contact the ITL for assistance. In this way we
may continue to improve our product. Alternatively visit our web site at www.innovative-
technology.co.uk

Enhancements of SSP can be requested by contacting: support@innovative-technology.co.uk

Innovative Technology Ltd.

 Derker Street
 Oldham
 England
 OL1 4EQ
 Tel: +44 (0) 161 626 9999
 Fax: +44 (0) 161 620 2090
 Email support@innovative-technology.co.uk

web site www.innovative-technology.co.uk

Smiley® and the ITL Logo are international registered trademarks and they are the property of Innovative
Technology Limited.

Innovative Technology has a number of European and International Patents and Patents Pending
protecting this product. If you require further details please contact ITL®.

Innovative Technology is not responsible for any loss, harm, or damage caused by the installation and
use of this product. This does not affect your local statutory rights. If in doubt please contact Innovative
Technology for details of any changes

SSP Smiley® Secure Protocol Version 3 – GA138-12

 6 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

2.0 General Description.
Smiley® Secure Protocol - SSP is a secure interface specifically designed by ITL® to address the
problems experienced by cash handling systems in gaming machines. Problems such as acceptor
swapping, reprogramming acceptors and line tapping are all addressed.

The interface uses a master slave model, the host machine is the master and the peripherals (note
acceptor, coin acceptor or coin hopper) are the slaves.

Data transfer is over a multi-drop bus using clock asynchronous serial transmission with simple open
collector drivers. The integrity of data transfers is ensured through the use of 16 bit CRC checksums
on all packets.

Each SSP device of a particular type has a unique serial number; this number is used to validate
each device in the direction of credit transfer before transactions can take place. To provide extra
security the protocol can operate in an encrypted mode to protect the system from fraud through bus
monitoring.

To provide this security a constantly changing random 64 bit key is used. Commands are currently
provided for coin acceptors, note acceptors and coin hoppers. All current features of these devices
are supported.

Features:

• Serial control of Note / Coin Validators and Hoppers
• 4 wire (Tx, Rx, +V, Gnd) system
• RS232 (like) - open collector driver
• High Speed 9600 Baud Rate
• 16 bit CRC error checking
• Data Transfer Mode
• 64 Bit Encrypted Mode

Benefits:

• Proven in the field
• Simple and low cost interfacing of transaction peripherals.
• High security control of payout peripherals.
• Defence against surrogate validator fraud.
• Straightforward integration into host machines.
• Remote programming of transaction peripherals
• Open standard for universal use.

To help in the software implementation of the SSP, ITL can provide, C Code, DLL controls and Visual
Basic applications on request. Please contact support@innovative-technology.co.uk.

SSP Smiley® Secure Protocol Version 3 – GA138-12

 7 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

3.0 Hardware Layer

Communication is by character transmission based on standard 8-bit asynchronous data transfer.
Only four wires are required TxD, RxD, +V and ground. The transmit line of the host is open collector,
the receive line of each peripheral has a 10Kohm pull-up to 5 volts. The transmit output of each slave
is open collector, the receive input of the host has a single 3k3 ohm pull-up to 5 volts.

The data format is as follows:
 Encoding: NRZ
 Baud Rate: 9600
 Duplex: Full Duplex
 Start bits: 1
 Data Bits: 8
 Parity: none
 Stop bits: 2

Recommended Connectors
Two types of connectors are recommended the first is a 15 pin 0.1” pitch header (Molex 22-01-2155),
this is primarily for use on bank note acceptors (see table 1).

Pin Signal
Pin 1 TxD
Pin 5 RxD
Pin 6 Address 0 (Currently not implemented)

Pin 12 GND
Pin 11 +12V

Link Pin 3 to Pin 8. ENABLE

Table 1 – Bank Note Acceptor Connector Details
The second is a 10-pin 0.1” dual row shrouded header with polarized slot. This is primarily for use
with coin acceptors. The pin out is shown below (see table 2).

Pin Signal Pin Signal
1 TxD 2 Reserved
3 RxD 4 Reserved
5 Address 0 6 Address 1
7 + 12 Volts 8 Ground
9 Address 2 10 Address 4

Table 2 – Coin Acceptor Connector Details

Caution:
Power to peripheral devices would normally be via the serial bus however devices

that require a high current supply in excess of 1.5 Amps e.g. hoppers would be expected to be
supplied via a separate connector.

SSP Smiley® Secure Protocol Version 3 – GA138-12

 8 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

4.0 Transport Layer.
4.1 Packet Format.
Data and commands are transported between the host and the slave(s) using a packet format as
shown below.

STX SEQ/Slave ID LENGTH DATA CRCL CRCH

STX: Single byte indicating the start of a message - 0x7F hex.
SEQ/Slave ID: Bit 7 is the sequence flag of the packet, bits 6-0 represent the address of the

slave the packet is intended for, the highest allowable slave ID is 0x7D
LENGTH: The length of the data included in the packet - this does not include

 STX, the CRC or the slave ID.
Slave ID: Single byte used to identify the address of the slave the packet is
 intended for.
DATA: Commands or data to be transferred.
CRCL, CRCH: Low and high byte of a forward CRC-16 algorithm using the
 Polynomial (X16 + X15 + X2 +1) calculated on all bytes,
 except STX. It is initialised using the seed 0xFFFF. The CRC is
 calculated before byte stuffing.

4.2 Packet Sequencing.
Byte stuffing is used to encode any STX bytes that are included in the data to be transmitted. If 0x7F
(STX) appears in the data to be transmitted then it should be replaced by 0x7F, 0x7F.

Byte stuffing is done after the CRC is calculated, the CRC its self can be byte stuffed. The maximum
length of data is 0xFF bytes. The sequence flag is used to allow the slave to determine whether a
packet is a re-transmission due to its last reply being lost.

Each time the master sends a new packet to a slave it alternates the sequence flag. If a slave
receives a packet with the same sequence flag as the last one, it does not execute the command but
simply repeats its last reply.

In a reply packet the address and sequence flag match the command packet. This ensures that no
other slaves interpret the reply as a command and informs the master that the correct slave replied.

After the master has sent a command to one of the slaves, it will wait for 1 second for a reply. After
that, it will assume the slave did not receive the command intact so it will re-transmit it with the same
sequence flag.

The host should also record the fact that a gap in transmission has occurred and prepare to poll the
slave for its serial number identity following the current message. In this way, the replacement of the
host’s validator by a fraudulent unit can be detected.

The frequency of polling should be selected to minimise the possibility of swapping a validator
between polls. If the slave has not received the original transmission, it will see the re-transmission as
a new command so it will execute it and reply. If the slave had seen the original command but its reply
had been corrupted then the slave will ignore the command but repeat its reply. After twenty retries,
the master will assume that the slave has crashed.

A slave has no time-out or retry limit. If it receives a lone sync byte part way through receiving a
packet it will discard the packet received so far and treat the next byte as an address byte.

SSP Smiley® Secure Protocol Version 3 – GA138-12

 9 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

5.0 Encryption Layer. (Currently not implemented)
5.1 Packet Format.
Encrypted data and commands are transported between the host and the slave(s) using the transport
mechanism described above, the encrypted information is stored in the data field in the format shown
below (see figure 1).

STX SEQ/Slave ID LENGTH DATA CRCL CRCH

STEX Encrypted Data

LENGTH DATA NEXT KEY CRCL CRCH
Figure 1 – Encrypted Data Format

STEX: Single byte indicating the start of an encrypted data block - 0x7E hex.
LENGTH: The length of the data included in the packet - this does not include

 STEX, the next key or the CRC.
DATA: Commands or data to be transferred.
NEXT KEY: The key needed to decrypt the next encrypted packet from the host.
CRCL, CRCH: Low and high byte of a forward CRC-16 algorithm using the
 polynomial (X16 + X15 + X2 +1) calculated on all bytes,
 except STEX. It is initialised using the seed 0xFFFF.

5.2 Encryption Keys.
At power up the first encrypted data packet sent to the peripheral will be encrypted using the
peripherals serial number (the host requests and stores the serial number of each peripheral when it
is installed – see control layer).

After the first transmission data is encrypted/decrypted using the key contained in the last packet, the
host generates this randomly. The peripheral will always reply to an encrypted packet with data
encrypted using the same key as the original packet from the host.

After the data has been decrypted the CRC algorithm is preformed on all bytes including DATA,
NEXT KEY, CRCL and CRCH. The result of this calculation will be zero if the data has been
decrypted with the correct key.

If the result of this calculation is non-zero then the peripheral should assume that the host did not
encrypt the data (transmission errors are detected by the transport layer). The slave should go out of
service until it is reset.

5.3 Encryption Algorithm.
The encryption algorithm has a 64-bit key. This is only a short key but when combined with the
mechanism for changing the key in every packet the system provides a high level of security.
Appendix B contains C source code for encryption and decryption.

The algorithm will easily translate into assembly code as long as the XOR is an operation. The
routines works on blocks of 16 bytes that are packed into an array of four long integers, the key is 8
bytes long and is packed into an array of 2 long integers. If the data to be sent is not a multiple of 16
bytes then the remaining bytes are packed out with zeros (see tables 3).

SSP Smiley® Secure Protocol Version 3 – GA138-12

 10 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

5.4 Encryption Example.
Convert key into long integer
Key() 0 1 2 3 4 5 6 7
Value Ox67 Ox45 Ox23 Ox01 OxEF OxCD OxAB Ox89
L_key() 0 1
Value Ox01234567 Ox89ABCDEF

Get data bytes
Data 0 1 2 3 4 5 6 7 8 9 10
Value OxFF OxEE OxDD OxCC OxBB OxAA Ox99 Ox88 Ox77 Ox66 Ox55

Convert data into array of 4 long integers any unused bytes set to Ox00
Data 0 1 2 3
Value OxCCDDEEFF Ox8899AABB Ox00556677 Ox00000000

Pass data through encryption algorithm.
E_Data 0 1 2 3
Value Ox1500F4F6 OxF56E7CBA OxDA441723 Ox5D2743D2

Break up into individual bytes for transmission:
E_Data 0 1 2 3
Value Ox1500F4F6 OxF56E7CBA OxDA441723 Ox5D2743D2
 0 1 2 3 4 5 6 7 8 9 A B C D E F
Value F6 F4 00 15 BA 7C 6E F5 23 17 44 DA D2 43 27 5D

Tables 3 – Encryption Examples

SSP Smiley® Secure Protocol Version 3 – GA138-12

 11 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

6.0 Control Layer
6.1 Introduction
The slave can only respond to requests from the master with an address byte that matches the slaves
address, at no time will the slave transmit any data that is not requested by the host. Any data that is
received with an address that does not match the slave’s address will be discarded.

The master will poll each slave at least every 5 seconds. The slave will deem the host to be inactive, if
the time between polls is greater than 5 seconds. If the slave does not receive a poll within 5
seconds it should change to its disabled state. The minimum time between polls is specified for
individual peripherals. Only one command can be sent in any one poll sequence.

6.2 Addressing.
The address of a peripheral consists of two parts, the fixed part that determines the type of device
and the variable part. The variable part is used if there is a number of the same type of peripheral in
the same machine, for example hoppers (see table 4).

The variable part of the address can be set in one of two ways. Firstly it can be programmed to a
fixed number using a PC tool, or the peripheral can be programmed to take the rest of the address
from external pins on the interface connector (Currently not implemented).

Slave ID (Hex) Peripheral
0x00 Note validator 0
0x01 Note validator 1
0x02 Coin Validator 0
0x03 Coin Validator 1
0x04 Card Reader 0
0x05 Card Reader 1
0x07 Audit Device
0x08 Handheld Audit Collection Device
0x09 – 0x0F Reserved
0x10 – 0x1F Coin Hoppers 0 – 15
0x20 – 0x2F Note Dispensers 0 – 15
0x30 – 0x3F Card Dispensers 0 – 15
0x40 – 0x4F Ticket Dispensers 0 – 15
0x50 – 0x5F Extra Note Validators
0x60 – 0x7E Unallocated

Table 4 – Peripheral Addressing

6.3 Peripheral Validation.
To ensure that credit transfers are only received from or sent to genuine devices, the device receiving
the credit must first request the serial number from the sending device and only accept if the serial
number matches a pre-programmed number.

The serial number should be requested after each reset and also after each break in communications.
For example a host machine should request a coin acceptors serial number at reset or if a poll
sequence is unanswered, before enabling the device. Also, a coin hopper should not process any
dispense commands until the host machine has sent its serial number.

SSP Smiley® Secure Protocol Version 3 – GA138-12

 12 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

6.4 Generic Commands and Responses.
Generic commands are a set of commands that every peripheral must understand and act on (see
table 5).

6.4.1 Generic Commands
Action Command code (HEX)
Reset 0x01

Host Protocol Version 0x06
Poll 0x07

Get Serial Number 0x0C
Synchronisation command 0x11

Disable 0x09
Enable 0x0A

Program Firmware / currency 0x0B, Programming Type
Manufactures Extension 0x30, Command, Data

Table 5 – Generic Commands
Reset: Single byte command, causes the slave to reset.
Host Protocol Version: Dual byte command, the first byte is the command, the second byte is the
version of the protocol that is implemented on the host, current version is 02.
Poll: Single byte command, no action taken except to report latest events.
Get Serial Number: Single byte command, used to request the slave serial number. Returns 4-byte
long integer.
 Most significant byte first e.g.
 Serial number = 01873452 = 0x1C962C
 So response data would be 0x00 0x1C 0x96 0x2C

Sync: Single byte command, which will reset the validator to expect the next sequence ID to be 0.
Disable: Single byte command, the peripheral will switch to its disabled state, it will not execute any
more commands or perform any actions until enabled, any poll commands will report disabled.
Enable: Single byte command, the peripheral will return to service.
Program Firmware / currency: See section 6.4.3 – Remote Programming.
Manufactures Extension: This command allows the manufacturer of a peripheral to send commands
specific to their unit. The intention is that the manufacturer only uses the extension command
internally; it should not when operating in a host machine. The specific command and any data for
that command should follow the Extension command.

SSP Smiley® Secure Protocol Version 3 – GA138-12

 13 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

6.4.2 Generic Responses
Generic Response Response code

OK 0xFO
Command not known 0xF2

Wrong number of parameters 0xF3
Parameter out of range 0xF4

Command cannot be processed 0xF5
Software Error 0xF6

FAIL 0xF8
Table 6 - Generic Responses

OK: Returned when a command from the host is understood and has been, or is in the process of,
being executed.

Command Not Known: Returned when an invalid command is received by a peripheral.
Wrong Number Of Parameters: A command was received by a peripheral, but an incorrect number
of parameters were received.
Parameter Out Of Range: One of the parameters sent with a command is out of range. E.g. trying to
change the route map for channel 34 on a coin acceptor.
Command Cannot Be Processed: A command sent could not be processed at that time. E.g.
sending a dispense command before the last dispense operation has completed.
Software Error: Reported for errors in the execution of software e.g. Divide by zero. This may also
be reported if there is a problem resulting from a failed remote firmware upgrade, in this case the
firmware upgrade should be redone.

6.4.3 Remote Programming (Version 2.65 and later).

Code Description
0x0B, Type Start Programming, type (00 – firmware, 01 - currency)

0x16 Programming Status.
Table 7 - Remote Programming Code Summary

Using the command 0x0B followed by a parameter that indicates the type of programming required
performs remote programming (see table 7). Send 0x00 for firmware programming and 0x01 for
currency data programming.

The peripheral will respond with a generic reply. If the reply is OK, the host should send the first block
of the data file (the file header). The header has the format shown below (see table 8). The block size
depends on the peripheral used but must be a minimum of 10 bytes to contain the header data.

When the block size for a peripheral is greater than the header length (11 bytes) then the header is
padded out with 0’s to the length of a block. The maximum length of a block is 236 bytes.

File offset Description Size

0 Number of blocks to send (low byte, high byte), including header block 2 bytes
2 Manufacture code (of file) e.g. ‘ITL’ 3 bytes
5 File type – 0x00 firmware, 0x01 currency 1 byte
6 Unit subtype 1 byte
7 Unit version 1 byte
8 Block length (BL) 1 byte
9 Checksum (CRC of data section of file) CRC low byte 1 byte
A Checksum (CRC of data section of file) CRC high byte 1 byte
B Padded 0’s to block size BL-11 bytes

Table 8 - Remote Programming / Header and Block Size

SSP Smiley® Secure Protocol Version 3 – GA138-12

 14 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

The peripheral will then respond with OK or HEADER_FAIL depending on the acceptability of this file
(see table 9).

Response Code

OK 0xF0
HEADER_FAIL 0xF9

Table 9 – Peripheral Response
The host will then send the required number of data blocks. The peripheral will respond with a
generic response when each packet has been processed (see table 10).

If the host receives any response other than an OK then that packet is retried three times before
aborting the programming (the peripheral should then be reset).
After the last data packet has been sent and a response received, the host will send a programming
status command 0x16. The peripheral will respond with one of the following codes:

Response Code

OK 0xF0
Checksum Error 0xF7

FAIL 0xF8
Table 10 - Peripheral Response Codes

After a successful programming cycle, the peripheral should be reset. If the programming cycle does
not complete successfully, then the peripheral should be disabled until it can be programmed
successfully.

In the case of an unsuccessful firmware programming cycle, the new firmware will either be discarded
or partly programmed. If the firmware has been partly programmed, then the peripheral will respond
to all Polls with the generic response ‘Software Error’.

The peripheral will not allow the host to enable it until it receives a complete and valid firmware file.

6.4.4 Example programming file formats (ITL NV4 Validator).
Programming files supplied by Innovative Technology Ltd for NV4 BNV are formatted as follows (see
tables 11 and 12): Variable number of blocks depending on currency, fixed block length (128 bytes).

Header block 92, 01, 49, 54, 4C, 01, 01, 01, 80, 8D, 2C Padded to block length with 0’s
1st data block F0, 34, C0, 21, D3, 00, 00, 5F, 5F, 80h data bytes
2nd data block FF, 24, D3, 21, 45, 01, 00, 3F, 5F, 80h data bytes

 .
 .

257th data block FF, 24, D3, 21, 45, 01, 00, 3F, 5F, 80h data bytes
Table 11 - Currency File Example

Header block 01, 01, 49, 54, 4C, 00, 01, 01, 80, FD, 22 Padded to block length with 0’s
1st data block FF, 24, D3, 21, 45, 01, 00, 3F, 5F, 80h data bytes
2nd data block F0, 34, C0, D1, D3, 00, 00, 5F, 5F 80h data bytes

 .
 .

257th data block FF, 24, D3, 21, 45, 01, 00, 3F, 5F, 80h data bytes
Table 12 - Firmware File Example

SSP Smiley® Secure Protocol Version 3 – GA138-12

 15 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

6.4.5 Simplified remote programming flow chart.

Figure 2 - Programming Flow Chart

Open File

Read Header

Determine: download TYPE, block size and
number of blocks

Send:
START PROGRAMMING, TYPE

OK?
FAIL

Send next data block
(next BL bytes of file)

Last Data Block?

Send:
PROG_STATUS

FAIL
Send: RESET

DONE

OK

Send: HEADER
(First BL bytes of file

SSP Smiley® Secure Protocol Version 3 – GA138-12

 16 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

6.5 Banknote Validator

6.5.1 BNV Operation.
When the validator has recognised a note, it will not start to stack it until it receives the next valid poll
command after the read n (n<>0) has been sent. The note will be rejected if the host responds with a
REJECT.

6.5.2 BNV Commands
Action Command code (HEX)

Set inhibits 0x02
Display on 0x03
Display Off 0x04

Set-up Request 0x05
Reject 0x08

Unit data 0x0D
Channel Value data 0x0E

Channel Security data 0x0F
Channel Re-teach data 0x10

Last Reject Code 0x17
Hold 0x18

Enable Protocol Version Events 0x19
Table 13 – Bank Note Validator Commands

Set Inhibits: Variable length command, used to control which channels are enabled. The command
byte is followed by 2 data bytes, these bytes are combined to create the INHIBIT_REGISTER, each
bit represents the state of a channel (LSB= channel 1, 1=enabled, 0=disabled). At power up all
channels are inhibited and the validator is disabled.
Display On: Single Byte command, turns on the display illumination bulb.
Display Off: Single Byte command, turns off the display illumination bulb.
Reject: Single byte command causing the validator to reject the current note.
Set-up Request: Single byte command, used to request information about a slave. Slave will return
the following data: Unit Type, Firmware version, Country Code, Value multiplier, Number of channels,
(if number of channels is 0 then 0 is returned and next two parameters are not returned) Value per
channel, security of channel, Reteach count, Version of Protocol (see table 14).

Data Size/type Notes
Unit Type 1 byte, integer 0x00 Note Validator

Firmware Version 4 bytes, string XX.XX (can include space)
Country Code 3 bytes, string See Country Code Table

Value Multiplier 3 bytes, integer 24 bit value
Number of channels 1 byte, integer Highest used channel

Channel Value 15 bytes, integer bytes 1 – 15 values
Security of Channel 15 bytes, integer bytes 1 – 15 security

Reteach count 3 byte, integer Byte 1 - reteach count.
Byte 2, 3 flag register indicating
which channels have been
modified. All set to zero at
factory.

Protocol version 1 byte, integer
Table 14 - Response to Set-up request

SSP Smiley® Secure Protocol Version 3 – GA138-12

 17 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

Unit Data Request: Single byte command which returns, Unit type (1 Byte integer), Firmware
Version (4 bytes ASCII string), Country Code (3 Bytes ASCII string), Value Multiplier (3 bytes integer),
Protocol Version (1 Byte, integer)
Channel Value Request: Single byte command which returns a number of channels byte (the
highest channel used) and then 1 to n bytes which give the value of each channel up to the highest
one, a zero indicates that the channel is not implemented.
e.g. A validator has notes in Channels 1,2,4,6,7 so this command would return
07,01,02,00,04,00,06,07. (The values are just examples and would depend on the currency of the
unit).
The actual value of a note is calculated by multiplying the value multiplier by channel value.
If the number of channels is 0 then only one 0 will be returned.
Channel Security Data: Single byte command which returns a number of channels byte (the highest
channel used) and then 1 to n bytes which give the security of each channel up to the highest one, a
zero indicates that the channel is not implemented.
 (1 = low, 2 = std, 3 = high, 4 = inhibited).
E.g. A validator has notes in Channels 1,2,4,6,7 channel 1 is low security, channel 6 is high security,
all the rest are standard security.
The return bytes would be
07,01,02,00,02,00,02,03
If the number of channels is 0 then only one 0 will be returned.
Channel Reteach Data: Single byte command, which returns 3 bytes.
First byte - the number of times the unit has been manually taught. (1 for each face).
Second byte - Channels 1 to 8 flag register bit 0 = channel 1 to bit 7 = channel 8 if set shows that the
indicated channel has been altered.
Third byte is as second but the channels shown are bit 1 = channel 9 to bit 6 = channel 15.
Last Reject Code: Single byte command, which will return a single byte that indicates the reason for
the last reject. The codes are shown below (see table 15). Specifics of note validation not shown to
protect integrity of manufacturers security (Version 2.66 and later).

Code Reject Reason
0x00 Note Accepted
0x01 Note length incorrect
0x02 Reject reason 2
0x03 Reject reason 3
0x04 Reject reason 4
0x05 Reject reason 5
0x06 Channel Inhibited
0x07 Second Note Inserted
0x08 Reject reason 8
0x09 Note recognised in more than one channel
0x0A Reject reason 10
0x0B Note too long
0x0C Reject reason 12
0x0D Mechanism Slow / Stalled
0x0E Striming Attempt
0x0F Fraud Channel Reject
0x10 No Notes Inserted

Table 15 – Reject Code Reasons
Hold: This command may be sent to BNV when Note Read has changed from 0 to >0 (valid note
seen) if the user does not wish to accept or reject the note with the next command.
This command will also reset the 10 second time-out period after which a note held would be rejected
automatically, so it should be sent before this time-out if an escrow function is required.

SSP Smiley® Secure Protocol Version 3 – GA138-12

 18 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

Enable higher protocol version events: Single byte command to enable events implemented in
protocol version >=3. Send this command directly as part of the start-up routine before any POLLS
are sent to ensure any new events are seen. If Command is not known (F2h) is returned, this feature
is not implemented in the firmware. Otherwise a two byte response will return: OK, and then the
current protocol version of the validator being addressed.

6.5.3 BNV Response To Polls
In response to any command from the master, the slave will respond with a generic response and
some data see (table 16). If the command is a poll then a message containing a list of events that
have occurred since the last poll, each event can only occur once in each response packet.

Event/ State Event Code
Slave Reset 0xF1

Read, n 0xEF, Channel No
Credit, n 0xEE, CHANNEL No
Rejecting 0xED
Rejected 0xEC
Stacking 0xCC
Stacked 0xEB

Safe Jam 0xEA
Unsafe Jam 0xE9

Disabled 0xE8
Fraud Attempt, n 0xE6, Channel No

Stacker Full 0xE7
Note cleared from front at reset (Protocol

version3)
0xE1, Channel No

Note cleared into cash box at reset (Protocol
version 3)

0xE2, Channel No

Table 16 – BNV Response Codes

Slave Reset: Returned when a peripheral has just powered up or when the host has sent a reset
command.
Read: The slave is reading a note, the second byte indicates which channel the note belongs to, if
the channel is currently unknown then zero is returned.
Credit: The slave has accepted currency on the channel indicated, the currency is now past the point
where the customer can recover the currency. The credit event is only sent once (except where
communication fails). The second byte indicates the channel of the credit.
Rejecting: The validator is currently rejecting a note.
Rejected: The slave has rejected the currency that was entered.
Stacking: The slave is moving the currency to a secure location.
Stacked: The stacking unit has completed it cycle.
Safe Jam: The slave has jammed and cannot return to service, the user cannot retrieve a note and a
credit has been given.
Unsafe Jam: The slave is jammed and cannot return to service, the credit has not been given and
the user may be able to retrieve the note.
Disabled: The slave has been disabled, either by disabling all channels or the 5 second poll time out
has expired.
Fraud Attempt: The validator has detected an attempt to fish notes out of the Stacker.

SSP Smiley® Secure Protocol Version 3 – GA138-12

 19 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

6.6 Coin Acceptor

6.6.1 Coin Acceptor Operation
The coin acceptor will provide generic response polls to commands from the master, the acceptor will
respond with a response and some data (see table 17).

6.6.2 Coin Acceptor Commands

Action Command code (HEX)
Set inhibits 0x02

Set-up Request 0x05
Unit data 0x0D

Channel Value data 0x0E
Channel Security data 0x0F
Channel Re-teach data 0x10

Last Reject Code 0x17
Update Coin Route 0x12

Table 17 – Coin Acceptor Commands
Set Inhibits: Variable length command, used to control which channels are enabled. The command
byte is followed by n data bytes, these bytes are combined to create the INHIBIT_REGISTER, each
bit represents the state of a channel (LSB= channel 1, 1=enabled, 0=disabled). At power up all
channels are inhibited and the validator is disabled.
Set-up Request: Single byte command, used to request information about a slave. Slave will return
the following data (see table 18): Unit Type, Firmware version, Country Code, Value multiplier,
Number of channels, (if number of channels is 0 then 0 is returned and next two parameters are not
returned) Value per channel, security of channel, Reteach count, Version of Protocol.

Data Size/type Notes
Unit Type 1 byte, integer 0x01 Coin Validator

Firmware Version 4 bytes, string XX.XX (can include space)
Country Code 3 bytes, string See Country Code Table

Value Multiplier 3 bytes, integer 24 bit value
Number of channels 1 byte, integer Highest used channel

Channel Value 15 byte, integer bytes 1 - n values
Security of Channel 15 byte, integer bytes 1- n security

Reteach count 3 byte, integer Byte 1 - reteach count.
Byte 2,3 flag register indicating
which channels have been
modified. All set to zero at
factory.

Protocol version 1 byte, integer
Table 18 – Response to Set-up request

Unit Data Request: Single byte command which returns, Unit type (1 Byte integer), Firmware
Version (4 bytes ASCII string), Country Code (3 Bytes ASCII string), Value Multiplier (3 bytes integer),
Protocol Version (1 Byte, integer)
Channel Value Request: Single byte command which returns a number of channels byte (the
highest channel used) and then 1 to n bytes which give the value of each channel up to the highest
one, a zero indicates that the channel is not implemented.
E.g. A validator has coins in Channels 1,2,4,6,7 so this command would return
07,01,02,00,04,00,06,07. (The values are just examples and would depend on the currency of the
unit). The actual value of a coin is calculated by multiplying the value multiplier by channel value.
If the number of channels is 0 then only one 0 will be returned.

SSP Smiley® Secure Protocol Version 3 – GA138-12

 20 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

Channel Security Data: Single byte command which returns a number of channels byte (the highest
channel used) and then 1 to n bytes which give the security of each channel up to the highest one, a
zero indicates that the channel is not implemented.
 (1 = low, 2 = std, 3 = high, 4 = inhibited).
E.g. A validator has coins in Channels 1,2,4,6,7 channel 1 is low security, channel 6 is high security ,
all the rest are standard security.
The return bytes would be
07,01,02,00,02,00,02,03
If the number of channels is 0 then only one 0 will be returned.
Channel Reteach Data: Single byte command, which returns 3 bytes.
First byte - the number of times the unit has been manually taught. (1 for each face).
Second byte - Channels 1 to 8 flag register bit 0 = channel 1 to bit 7 = channel 8 if set shows that the
indicated channel has been altered.
Third byte is as second but the channels shown are bit 1 = channel 9 to bit 6 = channel 15.
Last Reject Code: Single byte command, which will return a single byte that indicates the reason for
the last reject. The codes are shown below (see table 19).

Code Reject Reason
0x00 Coin Accepted
0x01 Reject error 1
0x02 Reject error 2
0x03 Reject error 3
0x04 Reject error 4
0x05 Channel Inhibited (software)
0x06 Channel Inhibited (SSP)
0x07 Closely following coin
0x08 Reject error 8
0x09 Match in multiple windows
0x0A Reject error 10
0x0B Reject error 11
0x0C Reject error 12
0x0D Reject error 13
0x0E Strim Attempt
0x0F Fraud Channel Reject

0x10 –0xFF Reserved
Table 19 - Reject Reason Codes

Update Coin Route: This command consists of three bytes; the actual command, the channel to be
updated and the route information. The route information is packed into one byte, each bit represents
a route, if a bit is set then the route is allowed for that channel.
Example: 0x12, 0x02, 0x24 – Update route for channel 2 to 00100100 (routes 3 and 6).

SSP Smiley® Secure Protocol Version 3 – GA138-12

 21 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

6.6.3 Coin Acceptor Responses to Polls
In response to any command from the master the acceptor will respond with a generic response and
some data (see table 20). If the command is a poll then a message containing a list of events that
have occurred since the last poll, each event can only occur once in each response packet.

Event / State Event Code
Credit, n 0xEE, CHANNEL No
Rejected 0xEC

Coin Routed 0xE5, route No
Safe Jam 0xEA

Unsafe Jam 0xE9
Disabled 0xE8

Fraud Attempt 0xE6
Table 20 – Coin Acceptor Response Codes

Credit: The slave has accepted currency on the channel indicated, the currency is now past the point
where the customer can recover the currency. The credit event is only sent once (except where
communication fails). The second byte indicates the channel of the credit.
Rejected: The slave has rejected the currency that was entered.
Coin Routed: The acceptor has routed the last coin accepted.
Safe Jam: The slave has jammed and cannot return to service, the user cannot retrieve a coin and a
credit has been given.
Unsafe Jam: The slave is jammed and cannot return to service, the credit has not been given and
the user may be able to retrieve the coin.
Disabled: The slave has been disabled, either by disabling all channels or the 5 second poll time out
has expired.
Fraud Attempt: The validator has detected an attempt to fish coins out of the unit.

SSP Smiley® Secure Protocol Version 3 – GA138-12

 22 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

6.7 Coin Hopper
6.7.1 Coin Hopper Operation
All transactions with a hopper should be encrypted to prevent dispense commands being recorded
and replayed by an external device.

To enable the dispense command of the hopper the host must send it a serial number, which
matches the one stored in the hopper. This has two implications for the hopper firstly it must have
some non-volatile memory to store the correct serial number in. Secondly, it must have a means of
switching mode so that the next serial number received is stored as its reference number.

This allows the hopper to be installed in a host machine without manually programming the reference
serial number. As the hopper is in a secure location in the host, this could be done by pressing a
recessed button in the hopper.

6.7.2 Coin Hopper Commands
Action Command code (HEX)

Dispense 0x13, No of coins
Host Serial Number Request 0x14, Serial No

Set-up Request 0x15
Table 21 – Coin Hopper Commands

Dispense: Two-byte command, the first byte is the command it’s self and the second is the number
of coins to dispense.
Host serial number request: This allows the host machine to send its serial number to the hopper.
After a reset or break in communications the hopper will not process any other commands until it has
received a serial number equal to the one it has in its memory. If more than ten invalid serial
numbers are received, the hopper will go out of service until its set-up input is activated.
Set-up Request: Single byte command, used to request information about a slave (see table 22).
Slave will return the following data: Unit Type, Firmware version, Country Code, Coin Type, Maximum
Capacity, Version of Protocol.

Data Size / type Notes
Unit Type 1 byte, integer 0x02 Coin Hopper

Firmware Version 4 bytes, string XX.XX (can include space)
Country Code 3 bytes, string See Country Code Table

Coin Type 1 byte, integer
Maximum Capacity 2 Bytes, integer

Low coin value 1 Byte, integer Number of coins left at low coin event.
Protocol version 1 byte, integer

Table 22 - Response to Set-up request

SSP Smiley® Secure Protocol Version 3 – GA138-12

 23 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

6.7.3 Coin Hopper Responses to Polls
Event/ State Event Code
Dispensing 0xD1, No of coins dispensed
Dispensed 0xD2, No of coins
Coins Low 0xD3

Empty 0xD4
Jammed 0xD5

Fraud Attempt 0xE6, Fraud Code
Table 23 – Coin Hopper Responses to Polls

Dispensing: Two-byte response the second byte is the number of coins that have been dispensed at
the point when the poll was received.
Dispensed: Two-byte response that indicates when the hopper has finished a dispense operation,
either because the required number of coins have been dispensed or the hopper is out of coins or
jammed. The second byte is the number of coins that were successfully dispensed.
Coins Low: This is reported when the hopper has become low on coins, the hopper will report this
event until it is empty or refilled.
Coins Empty: Single byte response indicating that the hopper is empty of coins; the hopper will
report this state until it is filled it will also become disabled.
Jammed: Single byte response that indicates that the hopper is jammed; this is reported until it is un-
jammed or reset. It will also become disabled.
Fraud Attempt: This will be reported if an attempt has been made to remove coins from the hopper.

SSP Smiley® Secure Protocol Version 3 – GA138-12

 24 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

6.8 Basic Card Reader.
6.8.1 Basic Card Reader Operation.
The basic card reader will allow a small amount of data to be securely stored on a removable card.

The reader / card combination provides the following features:

• Each card reports a unique 32-bit ID number.
• A small amount of data can be stored on each card (CS1 16 bytes).
• The host must provide a 32-bit password to access the card.
• The card provides a 24-bit password to the host.
• The host can display messages on the readers display.

Before the card will reports its ID number or allow access to the data on the card the card must be
authorised.

The process to do this involves the following two steps:

Firstly the host must provide the reader with the correct password for the card, the card will then
provide its ID number and a system password.
The host must check that the password provided by the card is correct for this system.

Once this process is complete then the host can read or write data from the card. The states of the
card reader and transitions between states are shown below (see figure 3).

Figure 3 Card Transition States

Card Removed
Card

Removed

End Session

Authorise

Card Entered

Disable

DISABLED IDLE

CARD
INSERTED

CARD
AUTHORISED

Read / Write Card

Enable

SSP Smiley® Secure Protocol Version 3 – GA138-12

 25 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

6.8.2 Basic Card Reader Commands.
Action Command code (HEX)

Authorise Card 0x20, Card Password
Read Card 0x21
Write Card 0x22, Data

End Session 0x23
Display Message 0x24, Message, 0x00
Set-up Request 0x15

Table 24 - Basic Card Reader Commands
Authorise Card: Used to authorise a card, this must be successfully completed before the card can
be read from or written to. The command should be followed by a four-byte card password. If the
card accepts the password then the reader will respond with OK, a four byte card ID and a three-byte
system password, otherwise it will respond with FAIL. (See table 25) If the returned system password
is acceptable to the host then the card is accepted, if not then the host should use the END SESSION
command to reject the card.

Response Code
Password Accepted – OK 0xF0,Card ID (4), System Password (3)
Password Rejected – FAIL 0xF8

Table 25 - Password Commands
Read Card: This command returns all the data from the card; the Storage Capacity field of the Set-up
Request response determines the number of bytes returned. This command can only be used after a
successful Authorise Card sequence.
Write Card: This command is used to write data to the card, the data to be written to the card should
follow the command. The reader will respond with a generic response; OK if the data was written
successfully and FAIL if there was a problem. This command can only be used after a successful
Authorise Card sequence.
End Session: This command is used to end the session with the card after reading and writing to the
card, or if the card ID or system password are unacceptable.
Display Message: The host can use this command to display messages on the reader display. The
command should be followed by a NULL terminated string to be displayed. The message will be
displayed once only. If a previous message is still being displayed then the new message will be
displayed once the previous one has finished. The maximum message length is 240 characters.
Set-up Request: Single byte command, used to request information about a slave. Slave will return
the following data: Unit Type, Firmware version, Storage Capacity, Unit Capability, and Version of
Protocol (see table 26).

Data Size/type Notes
Unit Type 1 byte, integer 0x03 - Basic Card Reader

Firmware Version 4 bytes, string XX.XX (can include space)
Storage Capacity 1 byte, integer Number of bytes (CS1 – 16)
Units Capability 1 byte, integer 0x00 Read only, 0x01 W/R
Protocol version 1 byte, integer

Table 26 Response to Set-up request

SSP Smiley® Secure Protocol Version 3 – GA138-12

 26 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

6.8.3 Basic Card Reader Responses to Polls.
Event / State Event Code
Card Inserted 0xC0

Card Authorised 0xC1, Password
Card Removed 0xC2

Disabled 0xE8
Unit Fault 0xC3, Fault Code

Table 27 - Basic Card Reader Responses to Polls

Card Inserted: This state is entered when a card is entered into the reader; it can only be entered
from the idle state. The state is left when the card is authorised or when the card is removed.
Card Authorised: This state is entered after a successful card authorise sequence. This is the only
state in which the card can be read from and written to. The state is exited after the host issues an
End Session command (returning to the Card Inserted state), or if the card is removed (returning to
the idle state after reporting a Card Removed event).
Card Removed: This event is reported when the card is removed from the reader, the reader will
return to the idle state.
Disabled: This state is the initial state after power up; it is also entered after the host issues a
Disable command. The display is off, and all card entered are ignored.
Unit Fault: In the event that of the card reader reports a Unit Fault the event code 0XC3 will be
transmitted to the host machine.

SSP Smiley® Secure Protocol Version 3 – GA138-12

 27 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

Appendix A – Country Codes.
Country Abbr. Country Abbr.

Algeria DZD Japan JPY
Arab (Un. Emir) AED Jordan JOD

Argentina ARA Kenya KES
Australia AUD Kuwait KWD
Austria ATS Lebanon LBP
Bahrain BHD Luxembourg LUF
Belgium BEF Malaysia MYR
Brazil BRE Mexico MXP

Bulgaria BGL Morocco MAD
Canada CAD Netherlands NLG
China CYN Netherlands Ant. ANG
C.I.S RBL New Zealand NZD

Columbia COP
Cuba CUP Nigeria NGN

Cyprus CPY Norway NOK
Czechoslovakia CSK Oman OMR

Denmark DKK Philippines PHP
Egypt EGP Poland PLZ
Euro EUR Portugal PTE

Finland FIM Qatar QAR
France FRF Rep. of Croatia HRD

Germany DEM Rep. of Slovenia SIT
Great Britain GBP Rumania ROL

Greece GRD Saudi Arabia SAR
Hong Kong HKD Singapore SGD

Hungary HUF South Africa ZAR
Iceland ISK Spain ESP
India INR Sri Lanka LKR

Indonesia IDR Sweden SEK
Iran IRR Switzerland CHF
Iraq IQD Syria SYP

Ireland IEP Tunisia TND
Israel ILS Turkey TRL
Italy ITL United States USD

SSP Smiley® Secure Protocol Version 3 – GA138-12

 28 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

Appendix. B – Block Encryption Routines.
B.1 Encryption routine
/***
 Function CODE
Function to encrypt 16 bytes of data (4 long ints)
Usage: : code (long_data, long_current_key);
Parameters: data() - 16 bytes to be encrypted packed into 4 long ints
 Key() - key to use packed into array of 2 long ints
Returns: data() - 16 bytes of encrypted data packed into 4 long ints
Locals: w,x,y,z,delta,n
/***
void code(long* data, long* key) {

unsigned long w=data[0],x=data[1],y=data[2],z=data[3], sum=0, /* set up */
 delta=0x9e3779b9, n=32 ; /* a key schedule constant */
 while (n-->0) { /* basic cycle start */
 sum += delta ;

 w += (z<<4)+key[0] ^ z+sum ^ (z>>5)+key[1] ;
 x += (w<<4)+key[1] ^ w+sum ^ (w>>5)+key[0] ;
 y += (x<<4)+key[0] ^ x+sum ^ (x>>5)+key[1] ;
 z += (y<<4)+key[1] ^ y+sum ^ (y>>5)+key[0] ;
 } /* end cycle */
 data0]=w ; data[1]=x ; data[2]=y ;data[3]=z;
}

B.2 Decryption routine
/***
 Function DECODE
Function to encrypt 16 bytes of data (4 long ints)
Usage: : decode (long_data, long_current_key);
Parameters: data() - 16 bytes of encrypted data packed into 4 long ints
 Key() - key to use packed into array of 2 long ints
Returns: data() - 16 bytes of decrypted data packed into 4 long ints
Locals: w,x,y,z,delta,n
/***
void decode(long* data, long* key) {
 unsigned long n=32, sum,w=data[0],x=data[1], y=data[2], z=data[3],
 delta=0x9e3779b9 ;
 sum=delta<<5 ;
 while (n-->0) { /* start cycle */
 z-= (y<<4)+key[1] ^ y+sum ^ (y>>5)+key[0] ;
 y-= (x<<4)+key[0] ^ x+sum ^ (x>>5)+key[1] ;
 x-= (w<<4)+key[1] ^ w+sum ^ (w>>5)+key[0] ;
 w-= (z<<4)+key[0] ^ z+sum ^ (z>>5)+key[1] ;
 sum-=delta ;

} /* end cycle */
 data[0]=w ; data[1]=x ; data[2]=y ;data[3]=z;
}

SSP Smiley® Secure Protocol Version 3 – GA138-12

 29 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

Appendix C – CRC Calculation Routines.

/*
|---|
c INNOVATIVE TECHNOLOGY LTD 2000
TITLE :CRC Functions
DRG No :
Author : P Dunlop
Revision: A

Issue No.

ISSUE A

External files Used:
Includes:
Linked:
Config:
Docs:

CRC FUNCTIONS FOR POLYNOMIAL (X^16)+(X^15)+(X^2)+1 AS USED IN SSP
CRC IS INITIALISED WITH THE SEED 0xFFFF
--
*/
#define FALSE 0x00
#define TRUE 0x01
unsigned char CRCL,CRCH;
int CRC_Table[8*32]={
0x0000,0x8005,0x800F,0x000A,0x801B,0x001E,0x0014,0x8011,
0x8033,0x0036,0x003C,0x8039,0x0028,0x802D,0x8027,0x0022,
0x8063,0x0066,0x006C,0x8069,0x0078,0x807D,0x8077,0x0072,
0x0050,0x8055,0x805F,0x005A,0x804B,0x004E,0x0044,0x8041,
0x80C3,0x00C6,0x00CC,0x80C9,0x00D8,0x80DD,0x80D7,0x00D2,
0x00F0,0x80F5,0x80FF,0x00FA,0x80EB,0x00EE,0x00E4,0x80E1,
0x00A0,0x80A5,0x80AF,0x00AA,0x80BB,0x00BE,0x00B4,0x80B1,
0x8093,0x0096,0x009C,0x8099,0x0088,0x808D,0x8087,0x0082,
0x8183,0x0186,0x018C,0x8189,0x0198,0x819D,0x8197,0x0192,
0x01B0,0x81B5,0x81BF,0x01BA,0x81AB,0x01AE,0x01A4,0x81A1,
0x01E0,0x81E5,0x81EF,0x01EA,0x81FB,0x01FE,0x01F4,0x81F1,
0x81D3,0x01D6,0x01DC,0x81D9,0x01C8,0x81CD,0x81C7,0x01C2,
0x0140,0x8145,0x814F,0x014A,0x815B,0x015E,0x0154,0x8151,
0x8173,0x0176,0x017C,0x8179,0x0168,0x816D,0x8167,0x0162,
0x8123,0x0126,0x012C,0x8129,0x0138,0x813D,0x8137,0x0132,
0x0110,0x8115,0x811F,0x011A,0x810B,0x010E,0x0104,0x8101,
0x8303,0x0306,0x030C,0x8309,0x0318,0x831D,0x8317,0x0312,
0x0330,0x8335,0x833F,0x033A,0x832B,0x032E,0x0324,0x8321,
0x0360,0x8365,0x836F,0x036A,0x837B,0x037E,0x0374,0x8371,
0x8353,0x0356,0x035C,0x8359,0x0348,0x834D,0x8347,0x0342,
0x03C0,0x83C5,0x83CF,0x03CA,0x83DB,0x03DE,0x03D4,0x83D1,

SSP Smiley® Secure Protocol Version 3 – GA138-12

 30 of 30

COPYRIGHT  2000. Innovative Technology Ltd. Derker Street, Oldham. OL1 4EQ

0x83F3,0x03F6,0x03FC,0x83F9,0x03E8,0x83ED,0x83E7,0x03E2,
0x83A3,0x03A6,0x03AC,0x83A9,0x03B8,0x83BD,0x83B7,0x03B2,
0x0390,0x8395,0x839F,0x039A,0x838B,0x038E,0x0384,0x8381,
0x0280,0x8285,0x828F,0x028A,0x829B,0x029E,0x0294,0x8291,
0x82B3,0x02B6,0x02BC,0x82B9,0x02A8,0x82AD,0x82A7,0x02A2,
0x82E3,0x02E6,0x02EC,0x82E9,0x02F8,0x82FD,0x82F7,0x02F2,
0x02D0,0x82D5,0x82DF,0x02DA,0x82CB,0x02CE,0x02C4,0x82C1,
0x8243,0x0246,0x024C,0x8249,0x0258,0x825D,0x8257,0x0252,
0x0270,0x8275,0x827F,0x027A,0x826B,0x026E,0x0264,0x8261,
0x0220,0x8225,0x822F,0x022A,0x823B,0x023E,0x0234,0x8231,
0x8213,0x0216,0x021C,0x8219,0x0208,0x820D,0x8207,0x0202};

//--
void Update_CRC(unsigned char num){
unsigned int table_addr;
 table_addr=(num ^ CRCH);
 CRCH=(CRC_Table[table_addr] >> 8) ^ CRCL;
 CRCL=(CRC_Table[table_addr] & 0x00FF);
}

//--
void Reset_CRC(void){
 CRCL=0xFF;
 CRCH=0xFF;
}

