

Revision History on the Document

Revision Date By Descriptions

A 25 June, 2003 KOMATSU, Tetsuro Newly issued

B 15 May, 2004 KIMURA, Masanori

- P6: ICT3K5-6240DLL.dll Revision up: 2587-02A
- P6: PrtclRS8.dll Revision up: 2567-01J
- P6: CollectLogEx.dll Revision up: 2509-02A
- P15, 27: Added API (ExecuteCommand2)
- P43: Change a description of CollectLogEx.dll

C Oct. 24, 2005 Masanori Kimura

- P2,3: Changed the company name.
 -> NIDEC SANKYO CORPORATION
- P6: ICT3K5-6240DLL.dll revision up: 2587-02B
 PrtclRS8.dll revision up: 2567-01L
- P10,14: Corrected clerical errors
 resultType -> replyType
- P11: Corrected a clerical error
 RESULT_TYPE -> REPLY_TYPE
- P13: Corrected a clerical error
 NEGATIVE_REPLY -> POSITIVE_REPLY
- P15: Deleted “List of APIs supported by the DLL”
- P21: Corrected a clerical error for _REPLY_TIMEOUT
- P24: Corrected a clerical error for COMMAND structure
 Command.dwSize -> Command.Data.dwSize
 Deleted unused character string
- P37,40: Added “WINAPI” to CALL_BACK_FUNCTION

D Dec. 6, 2005 Masanori Kimura - P6: ICT3K5_6240DLL.dll revision up: 2587-02C

E Mar. 14, 2006 Masanori Kimura

- P6: ICT3K5_6240DLL.dll revision up: 2587-02F
 PrtclRS8.dll revision up: 2567-01N
- P22: Addition of description about the time-out interval
- P42: Addition of description about Concealment of the

log output
F Apr. 14, 2006 Masanori Kimura - P6: PrtclRS8.dll revision up: 2567-01O

No ASL-NP-05022-54 1/43CONFIDENTIAL

Contents

1. Generals...2

1.1 Scope... 2
1.2 Conventions of Descriptions in This Document .. 2
1.3 Notice ... 3

2. Development Environment ...4

2.1 DLL... 4
2.2 Application Programs.. 4

3. Execution Environment...5

3.1 Host Computer... 5
3.2 OS (Operating System) ... 5
3.3 Language.. 5

4. General Functions ..6

4.1 File Structure... 6
4.1.1 Files and their main functions .. 6
4.1.2 Use of the files ... 6
4.1.3 Kernel driver .. 6

4.2 Specifications ... 7
4.2.1 The number of Card Reader/Writers that can be controlled at the same time 7
4.2.2 Data definition.. 7

DLL_INFORMATION ..8
COMMAND ...9
REPLY ..10
REPLY_TYPE ...11
POSITIVE_REPLY ..12
NEGATIVE_REPLY ..13
Examples of Command Execution Results to be Stored in REPLY14

4.2.3 APIs ... 15
GetDllInformation ..15
ConnectDevice ..16
DisconnectDevice ...18
CancelCommand ...20
ExecuteCommand ...22
ExecuteCommand2 ...26
ICCardTransmit ...27
SAMTransmit ...32
UpdateFirmware ..37

4.2.4 Log file ... 42

The end of the document. ...43

No ASL-NP-05022-54 2/43CONFIDENTIAL

1. Generals
1.1 Scope

This specification document intends to define the functions, contents, and restrictions regarding
the dynamic link library: ICT3K5-6240DLL, which controls the Card Reader/Writer:
ICT3K5-3R6240 produced by NIDEC SANKYO CORPORATION.

You should understand that, in general, any functions and/or matters that are not described in this
document cannot be implemented or their operation results are insecure.

1.2 Conventions of Descriptions in This Document

Unless otherwise especially noted; “Card Reader”, “Card Reader/Writer”, “Target”, “Device”,
“Target Device” and other equivalents shall all be understood to be the Card Reader/Writer
mentioned in “1.1 Scope”.

In this document, Dynamic Link Library is simply called “DLL” as commonly abbreviated. You
should understand, therefore, that mentioning “the DLL” without any special note points out the
dynamic link library mentioned in “1.1 Scope”.

“Application Program” or “Application” in short generally means a program(s) that controls the
Card Reader/Writer(s) through the DLL. These expressions can be replaced with “Program
using the DLL”.

“API” stands for “Application Programming Interface”. By using APIs, the Application Program
makes use of the functions, which the DLL serves.
The functions, which the DLL serves, are materialized as “Commands”. The Application
Program makes use of the DLL by calling the commands (functions). Professional-wise, such
operations may be described sometimes as; “The DLL exports functions and the Application
Program imports the DLL functions.”
As mentioned above, the substance of API is functions so that API is sometimes called “API
functions”.

“Host Computer” or “Host” in short is connected to the Card Reader/Writer(s) with cable, and it is
a computer that controls and operates the Card Reader/Writer(s) by executing the DLL or the
Application Program using the DLL.

“OS” stands for “Operating System”.

“Installation of the Card Reader/Writer” or “Installing the Card Reader/Writer” means to carry out a
series of preparation work such as; installing the Card Reader/Writer, connecting it to the Host
Computer, supplying it with electrical power in order that the Host Computer can control the Card
Reader/Writer.

“To control the Card Reader/Writer” means to send commands from the Host Computer for
making the Card Reader/Writer execute the specified functions and to eventually have the Host
Computer receive the corresponding response so that the Host Computer initiatively controls the
Card Reader/Writer to implement the Card Reader/Writer functions.

No ASL-NP-05022-54 3/43CONFIDENTIAL

“API call” or “Calling API” means “API execution” or “Executing API”, and they are used to mean
just the same thing and can be replaced with each other.

When any related publication(s) or article(s) to be referred to is pointed out in any section other
than explanatory parts, a rightward arrow “→” is placed at the top of the indication.

1.3 Notice

NIDEC SANKYO CORPORATION is exempt from any responsibilities, for damages on your
system including the host computer(s) and network system, which might have been caused due
to installing or using the DLL. Before using the DLL, therefore you are requested to check the
operation of the DLL and make sure of the operation contents to ensure that there should occur
no problem due to operation of the DLL.

Microsoft, Windows XP, Visual C/C++6.0 are all trademarks of the Microsoft Corporation, USA.

No ASL-NP-05022-54 4/43CONFIDENTIAL

2. Development Environment
2.1 DLL

The DLL is built under the development environment described below:
Microsoft Visual C/C++6.0

2.2 Application Programs

The DLL is coded by using the C++ language. It has already been made sure that the DLL is
rightly linked to an application program, built under the same development environment as what
the DLL has been built under, and it operates properly.
It has not been checked whether or not the DLL can rightly function when an application program
developed under any different environment tries to use the DLL.

No ASL-NP-05022-54 5/43CONFIDENTIAL

3. Execution Environment
3.1 Host Computer

IBM PC/AT compatible machine equipped with one or more COM port(s)

3.2 OS (Operating System)

Microsoft Windows XP

3.3 Language

The DLL operates, being irrelevant to the language specifications of the operating system. In
other words, the language specifications of the operating system do not affect the basic operation
of the DLL.

The DLL is provided with just one type of resource; i.e., English one, and therefore even if the
operating system of the execution environment is not English version, every message is given in
English.

No ASL-NP-05022-54 6/43CONFIDENTIAL

4. General Functions
4.1 File Structure

4.1.1 Files and their main functions

Files Main functions
[1] ICT3K5_6240DLL.dll This file is an execution module of the DLL. It serves

each API’s execution code. This file is needed when
the Application Program is executed.
Revision: 2587-02F

[2] ICT3K5_6240DLL.lib This file is needed when the Application Program, to
which the DLL is implicitly linked, is created. It serves
information on APIs exported by the DLL. It is not
needed when linking is made explicitly.

[3] ICT3K5_6240DLL.h It is a header file to serve API type declarations, error
code definitions and so on. It is needed when the
Application Program is created.

[4] PrtclRS8.dll It is a DLL file that operates at a lower layer under the
file [1] to serve more fundamental functions. It is
needed for executing the file [1].
Revision: 2567-01O

[5] CollectLogEx.dll It is a DLL file that operates at a lower layer under the
file [4] to create log files. This file is used in common
by the Download Function as well.
Revision: 2509-02A

4.1.2 Use of the files

The DLL files (.dll) are found and loaded at the time of executing the Application Program
according to the procedures and rules specified by the operating system. Therefore, the
condition on the folders, in which the DLL files are installed, shall meet the specifications of the
operating system.

The files required at the time of developing the Application Program shall be used according to
the specifications of the development environment.

4.1.3 Kernel driver

The DLL communicates with the Card Reader/Writer by using a class driver bundled in the
operating system. Therefore, it is not needed to install any special kernel driver for executing
the DLL.

F

No ASL-NP-05022-54 7/43CONFIDENTIAL

4.2 Specifications

4.2.1 The number of Card Reader/Writers that can be controlled at the same time

It is possible to boot multiple threads from a process, i.e., the Application Program, for which the
DLL is mapped, and to make each thread control each different target.
In the specifications of the DLL, there is no restriction on the number of Card Reader/Writers that
can be controlled at the same time.

The resource, which is needed to control a Card Reader/Writer, is dynamically secured as
required so that there is theoretically no restriction on the number of Card Reader/Writers that
can be controlled. However, practically there appears some restriction due to the number of
COM ports equipped with the host computer and/or the restrictions of resource of the host
computer.

4.2.2 Data definition

This section describes the original data types used in the DLL.
The data types, which this section describes, are all defined in the header file (.h); one of the
configuring files.
→ Refer to the file [3].

No ASL-NP-05022-54 8/43CONFIDENTIAL

DLL_INFORMATION

typedef struct
{

struct
{

CHAR szFilename[_MAX_FNAME];
CHAR szRevision[32];

}
upperDll;

struct
{

CHAR szFilename[_MAX_FNAME];
CHAR szRevision[32];

}
lowerDll;

}
DLL_INFORMATION, *LPDLL_INFORMATION;

DLL_INFORMATION is used when GetDllInformation is executed. Each member stores
the information described below:

Members Descriptions
szFilename[] Character string to indicate the filename of the file [1]. upperDll

szRevision[] Character string to indicate the revision number of the
file [1].

szFilename[] Character string to indicate the filename of the file [4]. lowerDll

szRevision[] Character string to indicate the revision number of the
file [4].

→ Refer to GetDllInformation.

No ASL-NP-05022-54 9/43CONFIDENTIAL

COMMAND

typedef struct
{

BYTE bCommandCode;
BYTE bParameterCode;

struct
{
 DWORD dwSize;
 LPBYTE lpbBody;
}
Data;

}
COMMAND, *LPCOMMAND;

COMMAND is used for the purpose of giving the materials needed to compose a command
message when calling ExecuteCommand, i.e., a command code, a parameter code, and data.

Members Descriptions
bCommandCode Command code

bParameterCode Parameter code

dwSize Size of the data (bytes)
If there exists no data to give, set dwSize to be 0.

Data

lpbBody Pointer to the memory area where the data is saved
If dwSize is 0, then lpbBody is ignored.

→ Refer to ExecuteCommand.
→ Regarding the structure of a command message, refer to the specifications of Card

Reader/Writer Interface.

No ASL-NP-05022-54 10/43CONFIDENTIAL

REPLY

typedef struct
{

REPLY_TYPE replyType;

union

{
POSITIVE_REPLY positiveReply;
NEGATIVE_REPLY negativeReply;

}
message;

}
REPLY, *LPREPLY;

REPLY is used for the purpose of saving the execution results and contents of the command
executed by calling ExecuteCommand.

Members Descriptions
replyType Execution results of the command

→ Refer to REPLY_TYPE.

positiveReply Contents of the execution results in the case of
“replyType = PositiveReply“
→ Refer to POSITIVE_REPLY.

message

negativeReply Contents of the execution results in the case of
“replyType = NegativeReply“
→ Refer to NEGATIVE_REPLY.

→ Refer to REPLY_TYPE, POSITIVE_REPLY, NEGATIVE_REPLY, ExecuteCommand,

UpdateFirmware, ICCardTransmit, SAMTransmit.

No ASL-NP-05022-54 11/43CONFIDENTIAL

REPLY_TYPE

typedef enum
{

PositiveReply,
NegativeReply,
ReplyReceivingFailure,
CommandCancellation,
ReplyTimeout,

}
REPLY_TYPE, *LPREPLY_TYPE;

REPLY_TYPE is used for member declaration of the data definition: REPLY, and indicates the
execution results of the command notified by response message.

Definitions Descriptions
PositiveReply Positive response has been returned.

NegativeReply Negative response has been returned.

ReplyReceivingFailure Response receiving has failed.

CommandCancellation In the condition of waiting for response receiving,
CancelCommand has been executed and command
execution has been canceled.

ReplyTimeout In the condition of waiting for response receiving, time-out
has occurred.

→ Refer to REPLY.

No ASL-NP-05022-54 12/43CONFIDENTIAL

POSITIVE_REPLY

typedef struct
{

BYTE bCommandCode;
BYTE bParameterCode;

struct
{
 BYTE bSt1;
 BYTE bSt0;
}
StatusCode;

struct
{

DWORD dwSize;
BYTE bBody[MAX_DATA_ARRAY_SIZE];

}
Data;

}
POSITIVE_REPLY, *LPPOSITIVE_REPLY;

POSITIVE_REPLY is used for member declaration of the data definition: REPLY, and it is used
for storing the execution results of the command when a positive response is received.

Members Descriptions
bCommandCode Command code
bParameterCode Parameter code

bSt1 Status code: st1 StatusCode

bSt0 Status code: st0
dwSize Size of the data (bytes) given by the response message. Data

bBody[] Stores the data body given by the response message.

→ Refer to REPLY and NEGATIVE_REPLY.
→ Regarding the structure of a positive reply message, refer to the specifications of Card

Reader/Writer Interface.

No ASL-NP-05022-54 13/43CONFIDENTIAL

NEGATIVE_REPLY

typedef struct
{

BYTE bCommandCode;
BYTE bParameterCode;

struct
{
 BYTE bE1;
 BYTE bE0;
}
ErrorCode;

struct
{

DWORD dwSize;
BYTE bBody[MAX_DATA_ARRAY_SIZE];

}
Data;

}
NEGATIVE_REPLY, *LPNEGATIVE_REPLY;

NEGATIVE_REPLY is used for member declaration of the data definition: REPLY, and it is used
for storing the execution results of the command when a negative response is received.

Members Descriptions
bCommandCode Command code
bParameterCode Parameter code

bE1 Error code: e1 ErrorCode

bE0 Error code: e0
dwSize Size of the data (bytes) given by the response message. Data

bBody[] Stores the data body given by the response message.

→ Refer to REPLY and POSITIVE_REPLY.
→ Regarding the structure of a negative reply message, refer to the specifications of Card

Reader/Writer Interface.

No ASL-NP-05022-54 14/43CONFIDENTIAL

Examples of Command Execution Results to be Stored in REPLY

Example 1) In the case of Positive Response

If the contents of the response message, which returns as the results of executing the command
by calling ExecuteCommand, are as described below; …→

Type of response Positive response
Command code 12h
Parameter code 34h

st1 35h (= ‘5’)
Status code

st0 36h (= ‘6’)
Data A1h, A2h, A3h, A4h, A5h (5 bytes)

…→ contents of the response message are saved into the REPLY type data specified by
ExecuteCommand.

.replyType PositiveReply

.message
.positiveReply

.bCommandCode 12h

.bParameterCode 34h

.StatusCode
.bSt1 35h

.bSt0 36h

.Data
.dwSize 5

.bBody[] A1h, A2h, A3h, A4h, A5h

Example 2) In the case of Negative Response

If the contents of the response message, which returns as the results of executing the command
by calling ExecuteCommand, are as described below; …→

Type of response Negative response
Command code 12h
Parameter code 34h

e1 35h (= ‘5’)
Error code e0 36h (= ‘6’)
Data None

…→ contents of the response message are saved into the REPLY type data specified by API.

.replyType NegativeReply

.message
.negativeReply

.bCommandCode 12h

.bParameterCode 34h

.ErrorCode
.bE1 35h

.bE0 36h

.Data
.dwSize 0

.bBody[] No data storing

→ Refer to ExecuteCommand.

No ASL-NP-05022-54 15/43CONFIDENTIAL

4.2.3 APIs

GetDllInformation

DWORD GetDllInformation(

LPDLL_INFORMATION lpDllInformation
);

Function

Obtains information on the DLL.

Argument & Detailed Function

lpDllInformation

Information on the DLL is saved in the data set of DLL_INFORMATION type to get notified in the
format.
→ Refer to DLL_INFORMATION.

This API can be executed anytime, regardless of completion of ConnectDevice. Even if this
API is executed, no communication transaction between the Host Computer and Card
Reader/Writer (such as “Command sending – Response receiving”) is caused.

Return Value

_NO_ERROR

The return value of this API is always _NO_ERROR.

Example

DLL_INFORMATION dllInformation;
GetDllInformation(

&dllInformation
);

No ASL-NP-05022-54 16/43CONFIDENTIAL

ConnectDevice

DWORD ConnectDevice(

LPCSTR lpszComPortNumber,
const DWORD dwBaudrate
);

Function

Makes preparations for controlling the Card Reader/Writer(s). The key operations are as
described below:
① To set up communication between the Host Computer and Card Reader/Writer
② To secure and initialize the resource for controlling the objective Card Reader/Writer
→ Refer to DisconnectDevice.

Argument & Detailed Function

lpszComPortNumber

Specify the COM port number what the Card Reader/Writer is connected with. The COM port
number shall be a character string having a NULL at the end.

dwBaudrate

Specify the baudrate. Regarding the range of the baudrate available, refer to the specification of
Card Reader/Writer Interface.

For execution of any API operation accompanied by communication transaction, it is needed to
complete ConnectDevice in advance.

Return Value

_NO_ERROR

Normally completed

_CANNOT_CREATE_OBJECT_ERROR

Failed in creating the object

_DEVICE_NOT_READY_ERROR

Card Reader/Writer is not ready

This error may be caused in the cases described below:
① The specified Card Reader/Writer is not turned on.
② The specified Card Reader/Writer is not connected to the Host Computer.
③ Pin assignment of the connecting cable does not comply with the specification.

_CANNOT_OPEN_PORT_ERROR

Failed in opening the driver

This error may be caused in the cases described below:
① Invalid COM port number was specified
② Invalid baudrate was specified

No ASL-NP-05022-54 17/43CONFIDENTIAL

_FAILED_TO_BEGIN_THREAD_ERROR

Failed in creating or invoking a thread.

_DEVICE_ALREADY_CONNECTED_ERROR

ConnectDevice is already completed.

Example

E.g. 1)

static char szComPortNumber[] = “COM1”;
const DWORD dwBaudrate = 115200;

DWORD dwResult = ConnectDevice(

szComPortNumber,
dwBaudrate
);

if(dwResult == _NO_ERROR){

// Communications between the Host Computer and the Card Reader/Writer was established
// successfully.
...
...

}

E.g. 2)

#define _COM_PORT_NUMBER “COM2”
#define _BAUDRATE (38400)

DWORD dwResult = ConnectDevice(

_COM_PORT_NUMBER,
_BAUDRATE
);

if(dwResult == _NO_ERROR){

// Communications between the Host Computer and the Card Reader/Writer was established
// successfully.
...
...

}

No ASL-NP-05022-54 18/43CONFIDENTIAL

DisconnectDevice

DWORD DisconnectDevice(

LPCSTR lpszComPortNumber
);

Function

Quits controlling the Card Reader/Writer. The key operations are as described below:
① To quit communication
② To release the resource secured for controlling the objective Card Reader/Writer
 → Refer to ConnectDevice.

Argument & Detailed Function

lpszComPortNumber

Specify the COM port number what the Card Reader/Writer is connected with. The COM port
number shall be a character string having a NULL at the end.
→ Refer to ConnectDevice.

Once this API is executed, it becomes impossible to control the objective Card Reader/Writer.
When it becomes necessary to control the Card Reader/Writer, execute ConnectDevice again.

When it becomes unnecessary to control the Card Reader/Writer, for example, at the time of
quitting the Application Program; be sure to execute DisconnectDevice as a quitting
operation.

If device disconnection or things like that occurs in the process and it requires you to execute
ConnectDevice again, execute DisconnectDevice first and then execute
ConnectDevice.

Return Value

_NO_ERROR

Normally completed

_DEVICE_NOT_CONNECTED_ERROR

This error may be caused in the cases described below:
① ConnectDevice operation is not yet completed for the specified Card Reader/Writer.
② DisconnectDevice operation is already executed for the specified Card Reader/Writer.

No ASL-NP-05022-54 19/43CONFIDENTIAL

Example

#define _COM_PORT_NUMBER “COM2”
#define _BAUDRATE (38400)

// Establishes communications between the Host Computer and the Card Reader/Writer
DWORD dwResult = ConnectDevice(

_COM_PORT_NUMBER,
_BAUDRATE
);

if(dwResult == _NO_ERROR)
{

// ConnectDevice completed
...
...
// Closes communications
DisconnectDevice(_COM_PORT_NUMBER);

}

No ASL-NP-05022-54 20/43CONFIDENTIAL

CancelCommand

DWORD CancelCommand(

LPCSTR lpszComPortNumber
);

Function

Cancels the command being in operation. The key operations are as described below:
① To send “DLE,EOT” control code and receive the response
② To cancel the condition of waiting for the response if there exists ExecuteCommand waiting

for response to the command

Argument & Detailed Function

IpszComPortNumber

Specify the COM port number what the Card Reader/Writer is connected with. The COM port
number shall be a character string having a NULL at the end.
→ Refer to ConnectDevice.

Being executed, this API sends “DLE,EOT” control code to the Card Reader/Writer. Once
having received “DLE,EOT” control code while executing a command, the Card Reader/Writer
interrupts the command execution and returns a response. The API waits for receiving the
response, and it returns the control to the Application Program when the response reception is
confirmed.
Regarding the “DLE,EOT” control code and operation of Card Reader/Writers at the time when
the Card Reader/Writer receives the code, refer to the specifications of Card Reader/Writer
Interface.

To execute this API, ConnectDevice must have already been completed.
→ Refer to ConnectDevice.

If there exists ExecuteCommand waiting for response to command execution, executing
CancelCommand from another thread cancels the condition of waiting for response so that the
ExecuteCommand quits the execution and returns the control to the Application Program.
→ Refer to ExecuteCommand.

Return Value

_NO_ERROR

Normally completed

_DEVICE_NOT_CONNECTED_ERROR

ConnectDevice operation is not yet completed for the specified Card Reader/Writer.
→ Refer to ConnectDevice.

_FAILED_SEND_COMMAND_ERROR

“DLE,EOT” cannot be sent.
When an error has happened in the layer that operates under the DLL to serve further basic
functions to the DLL, this error code is returned.

No ASL-NP-05022-54 21/43CONFIDENTIAL

_FAILED_TO_RECEIVE_REPLY_ERROR

An error has happened in the operation of receiving the response for “DLE,EOT” control code.
When an error has happened in the layer that operates under the DLL to serve further basic
functions to the DLL, this error code is returned.

_REPLY_TIMEOUT

A time-out error has happened in the operation of receiving the response for “DLE,EOT” control
code.

Example

static char szComPortNumber[] = “COM1”;
const DWORD dwBaudrate = 19200;

// Establishes communications between the Host Computer and the Card Reader/Writer
ConnectDevice(

szComPortNumber,
dwBaudrate
);

...

...

...
// Aborts a command execution having been invoked by calling ExecuteCommand
// in another thread
CancelCommand(

szComPortNumber
);

No ASL-NP-05022-54 22/43CONFIDENTIAL

ExecuteCommand

DWORD ExecuteCommand(

LPCSTR lpszComPortNumber,
const COMMAND Command,
const DWORD dwTimeout,
LPREPLY lpReply
);

Function

Executes a command, and returns the execution result.

Argument & Detailed Function

IpszComPortNumber

Specify the COM port number what the Card Reader/Writer is connected with. The COM port
number shall be a character string having a NULL at the end.
→ Refer to ConnectDevice.

Command

Provide the materials needed to compose a command message, i.e., a command code, a
parameter code, and data.
→ Refer to COMMAND.

dwTimeout

Specify the time-out interval for the period from sending the command message until receiving
the reply message to it. The interval is specified in millisecond.
If dwTimeout is INFINITE, the function's time-out interval never elapses.
Refer to the specifications of Card Reader/Writer Interface about the time-out interval for each
command.

The time-out interval specified by this parameter is not always guaranteed.
Even if the same value is given as the time-out interval, a period from calling ExecuteCommand
until judging that time-out has occurred varies widely depending on factors such as ‘CPU stress’
and so on.

lpReply

Specify the data save destination for the command execution results, and give a pointer to
REPLY type data as the save destination.
→ Refer to REPLY.

To execute this API, ConnectDevice must have already been completed.
→ Refer to ConnectDevice.

Regarding the details of the command to be executed by calling this API, refer to the
specifications of Card Reader/Writer Interface.

No ASL-NP-05022-54 23/43CONFIDENTIAL

Return Value

_NO_ERROR

Normally completed

_DEVICE_NOT_CONNECTED_ERROR

ConnectDevice operation is not yet completed for the specified Card Reader/Writer.
→ Refer to ConnectDevice.

_CANCEL_COMMAND_SESSION_ERROR

Since CancelCommand is now being executed, it is impossible to execute this API.
→ Refer to CancelCommand.

_FAILED_TO_SEND_COMMAND_ERROR

The command cannot be sent.
When an error has happened in the layer that operates under the DLL to serve further basic
functions to the DLL, this error code is returned.

_FAILED_TO_RECEIVE_REPLY_ERROR

An error has been caused in response receiving operation for the executed command.
When an error has happened in the layer that operates under the DLL to serve further basic
functions to the DLL, this error code is returned.

_COMMAND_CANCELED

The command execution has been canceled.

_REPLY_TIMEOUT

Time-out has been caused in response receiving operation for the executed command.

Example

E.g. 1)

#define _TIMEOUT (20000) // milliseconds

static CHAR szComPortNumber[] = “COM1”;
const DWORD dwBaudrate = 38400;

// Establishes communications between the Host Computer and the Card Reader/Writer
// and detects a target device’s serial number
DWORD dwResult = ConnectDevice(

szComPortNumber,
dwBaudrate
);

...
...

No ASL-NP-05022-54 24/43CONFIDENTIAL

COMMAND Command; // Command message to send
{

Command.bCommandCode = 0x31; // Status request command
Command.bParameterCode = 0x30; // Parameter code
Command.Data.dwSize = 0; // Data size

}
REPLY Reply; // Reply message to receive

// Executes Status request command, and then receives a reply for the command

dwResult = ExecuteCommand(
szComPortNumber,
Command,
_TIMEOUT,
&Reply
);

if(dwResult == _NO_ERROR && Reply.replyType == PositiveReply)
{

if(Reply.message.positiveReply.StatusCode.bSt1 == ‘0’
&& Reply.message.positiveReply.StatusCode.bSt0 == ‘2’)
{

// status code=”02”
// Detected a card inside of Card Reader/Writer
...
...

}
}
else
{

// Unexpected situation occurred
...
...

}

E.g. 2)

#define _COM_PORT_NUMBER “COM1” // Target device’s COM port number
#define _BAUDRATE (19200) // Baudrate
#define _TIMEOUT (20000) // milliseconds

// Establishes communications between the Host Computer and the Card Reader/Writer
DWORD dwResult = ConnectDevice(

_COM_PORT_NUMBER,
_BAUDRATE
);

...

...

No ASL-NP-05022-54 25/43CONFIDENTIAL

COMMAND Command; // Command message to send
{

Command.bCommandCode = 0x30; // Initialize command
Command.bParameterCode = 0x30; // Parameter code
BYTE fm = 0x30;
BYTE Pd = 0x30;
BYTE Wv = 0x30;
BYTE Sh = 0x30;
BYTE Ds = 0x30;
BYTE Ty = 0x31;
BYTE Cp = 0x30;
BYTE bData[] = { 0x33, 0x32, 0x34, 0x30, fm, Pd, Wv, Sh, Ds, Ty, Cp, };
Command.Data.dwSize = sizeof(bData) / sizeof(BYTE); // Data size (bytes)
Command.Data.lpbBody = bData; // Start address of region where data is saved

}
REPLY Reply; // Reply message to receive

// Executes Initialize command, and then receives a reply for the command
dwResult = ExecuteCommand(

_COM_PORT_NUMBER,
Command,
_TIMEOUT,
&Reply
);

if(dwResult == _NO_ERROR)
{

// Initialize command successfully finished.
...
...
if(Reply.replyType == PositiveReply)
{

// Received positive reply
...
...

}
else if(Reply.replyType == NegativeReply)
{

// Received negative reply
...
...

}
...
...

}
else
{

// Initialize command failed.
...
...

}

No ASL-NP-05022-54 26/43CONFIDENTIAL

ExecuteCommand2

DWORD ExecuteCommand2(

LPCSTR lpszComPortNumber,
LPCOMMAND lpCommand,
CONST DWORD dwTimeout,
LPREPLY lpReply
);

Function

Executes a command, and returns the execution result.

ExecuteCommand and ExecuteCommand2 are identical except for just one point, i.e., in case
of ExecuteCommand the second parameter, COMMAND, is given as an instance while the
parameter is specified in the format of a pointer when calling ExecuteCommand2.
→Refer to ExecuteCommand.

No ASL-NP-05022-54 27/43CONFIDENTIAL

ICCardTransmit

DWORD ICCardTransmit(

LPCSTR lpszComPortNumber,
const DWORD dwDataSizeToSend,
LPBYTE lpbDataToSend,
const DWORD dwSizeOfDataToReceive,
LPDWORD lpdwSizeOfDataReceived,
LPBYTE lpbDataReceived,
LPDWORD lpdwAdditionalErrorCode,
LPREPLY lpReply
);

Function

Carries out a series of data exchange between the Host Computer and IC card.

Argument & Detailed Function

IpszComPortNumber

Specify the COM port number what the Card Reader/Writer is connected with. The COM port
number shall be a character string having a NULL at the end.
→ Refer to ConnectDevice.

dwDataSizeToSend

Specify the size of the data to be sent to the IC card, in bytes.

lpbDataToSend

Specify the top address of the memory area where the data to be sent to the IC card is saved.
The data, which starts from the address specified with this argument and whose size is as
specified with the argument dwDataSizeToSend, is sent to the IC card.

dwSizeOfDataToReceive

Specify the size of the data to be received from the IC card, in bytes.
The specified data size shall be equal to or less than the data receiving buffer size specified by
lpbDataReceived.
Sometimes the data received actually may be less than the size specified by this argument.

lpdwSizeOfDataReceived

Specify a pointer to the variable to save the size in the case of receiving data from the IC card.
The size of the data actually received, in bytes, is saved.

lpbDataReceived

Specify the address of the data save destination for saving the data received from the IC card.

lpdwAdditionalErrorCode

When some type of error occurs, the API returns an additional information.
Specify a pointer to the variable to save that.
→ See “Return Value”.

No ASL-NP-05022-54 28/43CONFIDENTIAL

lpReply

Specify the data save destination for the command execution results, and give a pointer to
REPLY type data as the save destination.
→ Refer to REPLY.

As API internal operation, ExecuteCommand gets called. ExecuteCommand is called
repeatedly as many times as required. Then the result(s) of only the command executed by the
last call is saved in the destination specified by this argument, and it is reported to the Application
Program.
In case any halfway ExecuteCommand has got an error, it is determined that the subsequent
operation cannot continue anymore and the API itself gets quitted due to the error. Under this
situation, returning the result(s) of the command executed by the last call makes it possible to find
out the cause the error, with which the API has quitted.
→ Refer to ExecuteCommand.

For the purpose of writing or reading a parcel of data into or out of the IC card, it can be done to
call ExecuteCommand instead as many times as required for causing the same operation effect
as this API does. However, since this API includes all the functions to execute chaining the IC
card command as the internal processing, it is free from any troublesome factor that chaining the
command by manual operation may result in.
Regarding the execution of chaining the IC card control command, refer to the specifications of
Card Reader/Writer Interface.

It is forbidden to send a command by executing ExecuteCommand to the objective Card
Reader/Writer from another thread in the process of this API. If this operation is done, the result
is insecure.

To execute this API, ConnectDevice must have already been completed.
→ Refer to ConnectDevice.

Return Value

_NO_ERROR

Normally completed

_ICC_TRANSMIT_COMMAND_EXECUTION_FAILED_ERROR

ExecuteCommand called in the API internal operation failed.
In this case the variable pointed by lpdwAdditionalErrorCode receives the return value of
ExecuteCommand.
→ Refer to ExecuteCommand.

_ICC_TRANSMIT_NEGATIVE_REPLY_RECEIVED_ERROR

A command executed in the API internal operation returned a negative response.

_ICC_TRANSMIT_FAILED_ALLOCATE_MEMORY_REGION_ERROR

Failed in securing the memory area required for executing this API.

No ASL-NP-05022-54 29/43CONFIDENTIAL

_ICC_TRANSMIT_ABORT_REQUEST_RECEIVED_ERROR

Received an ABORT request from the IC card.

_ICC_TRANSMIT_UNEXPECTED_ERROR

An unexpected error occurred.

Example

#define _COM_PORT_NUMBER “COM1” // Target device’s COM port number
#define _BAUDRATE (115200) // Baudrate
#define _TIMEOUT (20000) // milliseconds

COMMAND Command;
REPLY Reply;
DWORD dwResult;

// Establishes communications between the Host Computer and the Card Reader/Writer
dwResult = ConnectDevice(

_COM_PORT_NUMBER,
_BAUDRATE
);

if(dwResult != _NO_ERROR)
{

// ConnectDevice failed
goto _EXIT;

}

...

// Activates IC card
{

Command.bCommandCode = 0x49; // IC card control
Command.bParameterCode = 0x30; // Activate
Command.Data.dwSize = 0;

dwResult = ExecuteCommand(

_COM_PORT_NUMBER,
Command,
_TIMEOUT,
&Reply
);

if(dwResult != _NO_ERROR || Reply.replyType != PositiveReply)
{

// Command sending failed or command execution failed
goto _EXIT1;

}
}

No ASL-NP-05022-54 30/43CONFIDENTIAL

// Exchanges data between the Host Computer and IC card
{

BYTE bDataToSend[] = { 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, };
WORD dwDataSizeToSend = sizeof(bDataToSend) / sizeof(BYTE);
BYTE bData[1024];
WORD dwSizeOfDataReceived;
DWORD dwErrorCode;

dwResult = ICCardTransmit(

_COM_PORT_NUMBER,
dwDataSizeToSend,
bDataToSend,
512,
&dwSizeOfDataReceived,
bData,
&dwErrorCode,
&Reply
);

if(dwResult != _NO_ERROR)
{

// ICCardTransmit failed
...
...

}
}

// Deactivates IC card
{

Command.bCommandCode = 0x49; // IC card control
Command.bParameterCode = 0x31; // Deactivate
Command.Data.dwSize = 0;

dwResult = ExecuteCommand(

_COM_PORT_NUMBER,
Command,
_TIMEOUT,
&Reply
);

if(dwResult != _NO_ERROR || Reply.replyType != PositiveReply)
{

// Command sending failed or command execution failed
...
...

}
}

_EXIT1:

No ASL-NP-05022-54 31/43CONFIDENTIAL

// Closes communications between the Host Computer and the Card Reader/Writer
dwResult = DisconnectDevice(_COM_PORT_NUMBER);

_EXIT:

No ASL-NP-05022-54 32/43CONFIDENTIAL

SAMTransmit

DWORD SAMTransmit(

LPCSTR lpszComPortNumber,
const DWORD dwDataSizeToSend,
LPBYTE lpbDataToSend,
const DWORD dwSizeOfDataToReceive,
LPDWORD lpdwSizeOfDataReceived,
LPBYTE lpbDataReceived,
LPDWORD lpdwAdditionalErrorCode,
LPREPLY lpReply
);

Function

Carries out a series of data exchange between the Host Computer and SAM.

Argument & Detailed Function

IpszComPortNumber

Specify the COM port number what the Card Reader/Writer is connected with. The COM port
number shall be a character string having a NULL at the end.
→ Refer to ConnectDevice.

dwDataSizeToSend

Specify the size of the data to be sent to the SAM, in bytes.

lpbDataToSend

Specify the top address of the memory area where the data to be sent to the SAM is saved.
The data, which starts from the address specified with this argument and whose size is as
specified with the argument dwDataSizeToSend, is sent to the SAM.

dwSizeOfDataToReceive

Specify the size of the data to be received from the SAM, in bytes.
The specified data size shall be equal to or less than the data receiving buffer size specified by
lpbDataReceived.
Sometimes the data received actually may be less than the size specified by this argument.

lpdwSizeOfDataReceived

Specify a pointer to the variable to save the size in the case of receiving data from the SAM.
The size of the data actually received, in bytes, is saved.

lpbDataReceived

Specify the address of the data save destination for saving the data received from the SAM.

lpdwAdditionalErrorCode

When some type of error occurs, the API returns an additional information.
Specify a pointer to the variable to save that.
→ See “Return Value”.

No ASL-NP-05022-54 33/43CONFIDENTIAL

lpReply

Specify the data save destination for the command execution results, and give a pointer to
REPLY type data as the save destination.
→ Refer to REPLY.

As API internal operation, ExecuteCommand gets called. ExecuteCommand is called
repeatedly as many times as required. Then the result(s) of only the command executed by the
last call is saved in the destination specified by this argument, and it is reported to the Application
Program.
In case any halfway ExecuteCommand has got an error, it is determined that the subsequent
operation cannot continue anymore and the API itself gets quitted due to the error. Under this
situation, returning the result(s) of the command executed by the last call makes it possible to find
out the cause the error, with which the API has quitted.
→ Refer to ExecuteCommand.

For the purpose of writing or reading a parcel of data into or out of the SAM, it can be done to call
ExecuteCommand instead as many times as required for causing the same operation effect as
this API does. However, since this API includes all the functions to execute chaining the SAM
command as the internal processing, it is free from any troublesome factor that chaining the
command by manual operation may result in.
Regarding the execution of chaining the SAM control command, refer to the specifications of
Card Reader/Writer Interface.

It is forbidden to send a command by executing ExecuteCommand to the objective Card
Reader/Writer from another thread in the process of this API. If this operation is done, the result
is insecure.

To execute this API, ConnectDevice must have already been completed.
→ Refer to ConnectDevice.

Return Value

_NO_ERROR

Normally completed

_SAM_TRANSMIT_COMMAND_EXECUTION_FAILED_ERROR

ExecuteCommand called in the API internal operation failed.
In this case the variable pointed by lpdwAdditionalErrorCode receives the return value of
ExecuteCommand.
→ Refer to ExecuteCommand.

_SAM_TRANSMIT_NEGATIVE_REPLY_RECEIVED_ERROR

A command executed in the API internal operation returned a negative response.

_SAM_TRANSMIT_FAILED_ALLOCATE_MEMORY_REGION_ERROR

Failed in securing the memory area required for executing this API.

No ASL-NP-05022-54 34/43CONFIDENTIAL

_SAM_TRANSMIT_ABORT_REQUEST_RECEIVED_ERROR

Received an ABORT request from the IC card.

_SAM_TRANSMIT_UNEXPECTED_ERROR

An unexpected error occurred.

Example

#define _COM_PORT_NUMBER “COM1” // Target device’s COM port number
#define _BAUDRATE (19200) // Baudrate
#define _TIMEOUT (20000) // milliseconds

COMMAND Command;
REPLY Reply;
DWORD dwResult;

// Establishes communications between the Host Computer and the Card Reader/Writer
dwResult = ConnectDevice(

_COM_PORT_NUMBER,
_BAUDRATE
);

if(dwResult != _NO_ERROR){

// ConnectDevice failed
goto _EXIT;

}

...

// Selects SAM
{

Command.bCommandCode = 0x49; // SAM control
Command.bParameterCode = 0x50; // Select SAM
BYTE Sel = 0x30; // SAM#1
Command.Data.dwSize = 1; // Data size
Command.Data.lpbBody = &Sel; // Data

dwResult = ExecuteCommand(

_COM_PORT_NUMBER,
Command,
_TIMEOUT,
&Reply
);

if(dwResult != _NO_ERROR || Reply.replyType != PositiveReply)
{

// Command sending failed or command execution failed
goto _EXIT1;

}
}

No ASL-NP-05022-54 35/43CONFIDENTIAL

// Activates SAM
{

Command.bCommandCode = 0x49; // SAM control
Command.bParameterCode = 0x40; // Activate
Command.Data.dwSize = 0;

dwResult = ExecuteCommand(

_COM_PORT_NUMBER,
Command,
_TIMEOUT,
&Reply
);

if(dwResult != _NO_ERROR || Reply.replyType != PositiveReply)
{

// Command sending failed or command execution failed
goto _EXIT1;

}
}

// Exchanges data between the Host Computer and SAM
{

BYTE bDataToSend[] = { 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, };
DWORD dwDataSizeToSend = sizeof(bDataToSend) / sizeof(BYTE);
BYTE bData[1024];
DWORD dwSizeOfDataReceived;
DWORD dwErrorCode;

dwResult = SAMTransmit(

_COM_PORT_NUMBER,
dwDataSizeToSend,
bDataToSend,
512,
&dwSizeOfDataReceived,
bData,
&dwErrorCode,
&Reply
);

if(dwResult != _NO_ERROR)
{

// SAMTransmit failed
...
...

}
}

No ASL-NP-05022-54 36/43CONFIDENTIAL

// Deactivates SAM
{

Command.bCommandCode = 0x49; // SAM control
Command.bParameterCode = 0x41; // Deactivate
Command.Data.dwSize = 0;

dwResult = ExecuteCommand(

_COM_PORT_NUMBER,
Command,
_TIMEOUT,
&Reply
);

if(dwResult != _NO_ERROR || Reply.replyType != PositiveReply)
{

// Command sending failed or command execution failed
...
...

}
}

_EXIT1:

// Closes communications between the Host Computer and the Card Reader/Writer
dwResult = DisconnectDevice(_COM_PORT_NUMBER);

_EXIT:

No ASL-NP-05022-54 37/43CONFIDENTIAL

UpdateFirmware

DWORD UpdateFirmware(

LPCSTR lpszComPortNumber,
const DWORD dwBaudrate
LPCSTR lpszFilename,
CONST BOOL fCheckRevision,
CALL_BACK_FUNCTION fnFunction,
LPDWORD lpdwAdditionalErrorCode
);

Function

Updates the firmware of the Card Reader/Writer.

Argument & Detailed Function

lpszComPortNumber

Specify the COM port number what the Card Reader/Writer is connected with. The COM port
number shall be a character string having a NULL at the end.

dwBaudrate

Specify the baudrate. Regarding the range of the baudrate available, refer to the specification of
Card Reader/Writer Interface.

lpszFilename
Specify the name of the file to be downloaded. The file name shall be a character string having
a NULL at the end, and it can be accompanied by its path.

fCheckRevision
Determines whether or not to compare the revision of the file specified by lpszFilename with the
one of firmware installed in the Card Reader/Writer before updating.
In case of TRUE, updating is done only when the revisions are not identical. If the value is
FALSE, without comparing the revisions the file is installed replacing a current firmware.

fnFunction
Specify the callback function that is to be called for indicating the percentage of the total process.
If you do not need any service like that, specify it with a NULL.

The framework of the callback function has to be the following:

VOID WINAPI Func(
WPARAM wParam, // Indicates the percentage: 0,1,2,...,100
LPARAM lParam // No function is assigned

)
{

...

...
}

The percentage is provided as a value of wParam varying from 0 to 100, and the callback
function is called only when the value of the percentage increased.

No ASL-NP-05022-54 38/43CONFIDENTIAL

There is no function assigned to lParam.

lpdwAdditionalErrorCode

When some type of error occurs, the API returns an additional information.
Specify a pointer to the variable to save that.
→ See “Return Value”.

When this API is executed, operation is carried out in due order as the following list describes:

Order of
operation Purpose What is executed Descriptions

① To commence communication ConnectDevice

② To distinguish Supervisor
mode & User mode Initialize command

If it is notified to be Supervisor mode, the
operation jumps to step ⑥.
If it is User mode, the operation switches
to Supervisor mode by steps ③～⑤.

③ To switch to Supervisor mode Switch command By executing this command, device
disconnection occurs.

④ To terminate communication DisconnectDevice

⑤ To commence communication ConnectDevice

Since device disconnection occurs,
communication-commencing operation is
carried out again.

⑥ To initialize the Card
Reader/Writer Initialize command

⑦ To transmit download data Download command
Step ⑦ gets repeated to download all
data.

⑧ To switch to User mode Switch command By executing this command, device
disconnection occurs.

⑨ To terminate communication DisconnectDevice

⑩ To commence communication ConnectDevice

Since device disconnection occurs,
communication-commencing operation is
carried out again.

⑪
To make sure that the
firmware has been updated
correctly

Initialize command

It is checked that a positive response gets
returned to this command, to make sure
that the “User Program Code Area” is
operating.

⑫ To terminate communication DisconnectDevice

As ConnectDevice and DisconnectDevice are executed in the internal operation of this
API, you do not need to execute ConnectDevice to establish communications between the
Host Computer and the objective Card Reader/Writer before executing this API. If
ConnectDevice has finished, execute DisconnectDevice first and then execute this API.

It is forbidden to access to or to control the objective Card Reader/Writer of this API in the
process by executing any API such as ConnectDevice, DisconnectDevice,
ExecuteCommand, and CancelCommand. If this operation is done, the result is insecure.

Return Value

_NO_ERROR

Normally completed

No ASL-NP-05022-54 39/43CONFIDENTIAL

_UPDATE_FIRMWARE_CONNECT_DEVICE_FAILED_ERROR

ConnectDevice called in the API internal operation failed.
In this case the variable pointed by lpdwAdditionalErrorCode receives the return value of
ConnectDevice.
→ Refer to ConnectDevice.

_UPDATE_FIRMWARE_DISCONNECT_DEVICE_FAILED_ERROR

DisconnectDevice called in the API internal operation failed.
In this case the variable pointed by lpdwAdditionalErrorCode receives the return value of
DisconnectDevice.
→ Refer to DisconnectDevice.

_UPDATE_FIRMWARE_UNKNOWN_FILE_TYPE_ERROR

Unknown type of file was specified. This API does not know how to handle the file.

_UPDATE_FIRMWARE_CANNOT_OPEN_FILE_ERROR

The file cannot get opened.

_UPDATE_FIRMWARE_FAILED_TO_ALLOCATE_MEMORY_REGION_ERROR

Failed in securing the memory area for saving the download file.

_UPDATE_FIRMWARE_CANNOT_READ_FILE_ERROR

An error has happened at the time of reading the file.

_UPDATE_FIRMWARE_UNEXPECTED_FILE_CONTENTS_ERROR

The file cannot get interpreted.

_UPDATE_FIRMWARE_DEVICE_ALREADY_CONNECTED_ERROR

Communications between the Host Computer and the objective Card Reader/Writer has been
established.

_UPDATE_FIRMWARE_COMMAND_EXECUTION_FAILED_ERROR

ExecuteCommand called in the API internal operation failed.
In this case the variable pointed by lpdwAdditionalErrorCode receives the return value of
ExecuteCommand.
→ Refer to ExecuteCommand.

_UPDATE_FIRMWARE_NEGATIVE_REPLY_RECEIVED_ERROR

A command executed in the API internal operation returned a negative response.

_UPDATE_FIRMWARE_IDENTICAL_REVISION _ERROR

The revision number of the file specified by lpszFilename is identical with the one of the
current firmware.

_UPDATE_FIRMWARE_UNEXPECTED_ERROR

An unexpected error occurred.

No ASL-NP-05022-54 40/43CONFIDENTIAL

Example

E.g. 1)

static CHAR szComPortNumber[] = “COM1”;
const DWORD dwBaudrate = 38400;
DWORD dwErrorCode;

// Updates firmware
DWORD dwResult = UpdateFirmware(

szComPortNumber, // COM port number
dwBaudrate, // Baudrate
“1234-56A.DWL”, // File to download into the Card Reader/Writer
TRUE, // Compares revision numbers
NULL, // No information about progress is required
&dwErrorCode // Additional error information is returned if needed
);

E.g. 2)

BOOL g_fInTheProcess = FALSE;

// Callback function
void WINAPI Func(WPARAM wParam, LPARAM lParam)
{

if(wParam == 0)
{

// Firmware updating process has just begun
g_fInTheProcess = TRUE;

}
else if(wParam == 100)
{

// Firmware updating process has ended
g_fInTheProcess = FALSE;

}
...
...

}

No ASL-NP-05022-54 41/43CONFIDENTIAL

void Sample(void)
{

static CHAR szFilename[] = “c:\\users\\systemfiles\\1234-56A.dwl”;
DWORD dwErrorCode;

// Updates firmwate
DWORD dwResult = UpdateFirmware(

“COM2, // COM port number
38400, // Baudrate
szFilename,
FALSE,
 (CALL_BACK_FUNCTION)Func,
&dwErrorCode
);

...

...
}

No ASL-NP-05022-54 42/43CONFIDENTIAL

4.2.4 Log file

CollectLogEx.dll is the DLL to create a log file.
The features of CollectLogEx.dll and the log file created by the DLL are the followings:

Item Features
[1] File format Format: Text file

Symbol of line breaks: CR,LF (linefeed-carriage return character
pairs)

Symbol of an end of file: Not used
[2] File name $LogEx.txt

The following registry enables you to modify the setting:

Registry: HKEY_LOCAL_MACHINE\SOFTWARE\SankyoCollectLogEx
Key: LogFileName (REG_SZ)

[3] Folder to create a log
file

Current directory

The following registry enables you to modify the setting:

Registry: HKEY_LOCAL_MACHINE\SOFTWARE\SankyoCollectLogEx
Key: LogFileFolder (REG_SZ)

[4] Maximum number of
lines

10,000

The following registry enables you to alter the setting of the value:

Registry: HKEY_LOCAL_MACHINE\SOFTWARE\SankyoCollectLogEx
Key: MaxNumOfLines (REG_DWORD)

Range of the value: from 1 to 100,000

(If the value set is out of range, 10,000 is applied.)

Note:

When the line number exceeds the value specified by “maximum
number of lines”, it returns to the first line and keeps recording logs
putting new lines over existing ones.

[5] Number of characters
per line

100

The following registry enables you to alter the setting of the value:

Registry: HKEY_LOCAL_MACHINE\SOFTWARE\SankyoCollectLogEx
Key: MaxNumOfCharactersPerLine (REG_DWORD)

Range of the value: from 100 to 256

(If the value set is out of range, 100 is applied.)
[6] Maximum size of the

file
The following calculation gives the size in bytes:

(maximum number of lines)x{(number of characters per line)+2}
[7] Capability of disabling

the DLL to create a log
file

If there is no CollectLogEx.dll installed, no log file is to be
created.

Note:

Even without installation of CollectLogEx.dll, the DLL can still
work. However, under such condition, no log file is created. When
log file creating operation itself seems to cause a security problem
because any created log file may drain away by mistake to disclose
the contents of transaction, it might be better not to install
CollectLogEx.dll or to uninstall it if it is already installed.

[8] Identification of the
latest recorded line

The marker line, which is filled with ‘~’, is made to show the newest
line in a log file, and it facilitates searching the position of the line.

[9] Concealment of the log
output

CollectLogEx.dll does not record Mag-track data, C-APDU and
R-APDU.

It is possible to set enable or disable of concealment by ini file.

(It should be stored in the system folder of Windows.)
File name: ICT3K5_6240DLL_CONFIG.ini
Section name: EXTENSION_PARAMETER
Key name: RecordAllData
 To conceal: RecordAllData = 0 (default)
 Not to conceal: RecordAllData = 1

No ASL-NP-05022-54 43/43CONFIDENTIAL

The end of the document.

